125. Dependent Elements of an Automorphism of a C*-algebra

By Marie CHODA,*' Isamu KASAHARA,**' and Ritsuo NAKAMOTO***'

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1972)

1. Introduction. Let A be a unital C*-algebra. For an (*-preserving) automorphism α of A, an element a of A is called a dependent element of α if

(1) $ax = x^{\alpha}a$ for any $x \in A$.

If α is an inner automorphism of A induced by a, then clearly a is a dependent element.

In [5], Nakamura and Takeda recognized the importance of the following implication:

(*) If a is a dependent element of α then a=0.

They proved, among many others, in a finite factor $A \alpha$ satisfies (*) if α is outer, using a sophisticated argument. Recently, Kallman [3] called, when A is a von Neumann algebra, α freely acting if (*) is satisfied. His definition of free action agrees with the usual one due to von Neumann if A is an abelian von Neumann algebra. He proved, among others, every automorphism of a von Neumann algebra is directly decomposed into the freely acting and inner parts.

In the present note, we shall study some properties of dependent elements of automorphisms on C^* -algebras. We shall show, by elementary calculations, dependent elements are normal and invariant under the automorphism, in §2. We shall discuss some applications in §3, which include a completely elementary proof of a theorem of Nakamura, Takeda and Kallman. In §4, we shall give a few remarks, one of which is a slight improvement of a proof of a theorem of Kallman.

2. Dependent elements. We shall prove some elementary lemmas some of which are already known. In this section, we shall assume that A is a C^* -algebra with the center Z.

Lemma 1 (Kallman). If a is a dependent element of an automorphism α of A, then a*a and aa* belong to Z.

Proof. The following proof is a slight improvement of Kallman's. From (1), we have

^{*)} Department of Mathematics, Osaka Kyoiku University.

^{**)} Momodani Senior High School, Osaka.

^{***&#}x27; Faculty of Engineerings, Ibaraki University, Hitachi.

 $xa^* = a^*x^a$

[Vol. 48,

(2)

for all $x \in A$. Multiplying a by left in the both sides of (2), we have, for any $x \in A$,

$$aa^*x^{\alpha} = axa^* = x^{\alpha}aa^*,$$

so that we have $aa^* \in Z$. Similarly, by (1) and (2), we have

 $xa^*a = a^*x^{\alpha}a = a^*ax$.

for every $x \in A$, so that we have $a^*a \in Z$.

Lemma 2. If a is a dependent element of α , then a is normal.

Proof. By Lemma 1, we have

 $(aa^*)^2 = a(a^*a)a^* = (a^*a)aa^* = a^*(a(aa^*))$ $=a^{*}(aa^{*})a=a^{*}aa^{*}a=(a^{*}a)^{2}.$

Hence, by the unicity of the square root, we have $aa^* = a^*a$.

Lemma 3. If a is a dependent element of α , then a^*a is a dependent element of α in Z.

Proof. For any $z \in Z$, we have, by (1),

$$z^{\alpha}a^{*}a = a^{*}z^{\alpha}a = a^{*}az.$$

Hence a^*a is a dependent element of $\alpha | Z$.

From Lemma 3 and a theorem of Nakamura and Takeda [3; Lemma 2], we can deduce that a^*a is invariant under $\alpha: (a^*a)^{\alpha} = a^*a$. However, we shall prove this by an elementary manner in the following

Lemma 4 (Nakamura-Takeda). If A is abelian, and if a is a dependent element of an automorphism of A, then a is invariant: $a^{\alpha} = a$. (3)

Proof. At first, we shall show that a^{α} is also dependent if a is dependent. By (1), we have $a^{\alpha}x^{\alpha} = x^{\alpha^2}a^{\alpha}$, so that we have $a^{\alpha}y = y^{\alpha}a^{\alpha}$ for any $y \in A$, putting $y = x^{\alpha}$. The remainder of the proof is now a consequence of the following computation:

$$(a^{\alpha}-a)^{*}(a^{\alpha}-a) = a^{*\alpha}a^{\alpha} - a^{*\alpha}a^{\alpha} - a^{*\alpha}a + a^{*\alpha}a$$
$$= a^{\alpha}a^{\alpha} - a^{*\alpha}a^{\alpha} - aa^{*\alpha} + a^{*\alpha}a = 0.$$

Theorem 1. If a is a dependent element of an automorphism α of a C*-algebra A, then a is invariant under α .

Proof. By Lemma 2 and (2), we have

$$a^*a = aa^* = a^*a^{\alpha};$$

hence we have

 $a^{*}(a^{\alpha}-a)=0.$ (4)On the other hand, by (1), Lemmas 2, 3 and 4, we have $a^{*\alpha}a = aa^* = a^*a = (a^*a)^{\alpha} = a^{*\alpha}a^{\alpha}$.

Hence we have

 $a^{*\alpha}(a^{\alpha}-a)=0.$ (5)Subtracting (4) from (5), we have $(a^{*\alpha}-a^{*})(a^{\alpha}-a)=0.$

Therefore, we have (3).

Remark. Lemmas 1 and 2 are known long since when a is invertible, cf. [2; p. 15]. The full strength of Lemma 1 is observed at first by Kallman [3]. In the eyes of the specialists for seminormal operators, Lemma 1 states that a and a^* are quasinormal, so that Lemma 2 follows, cf. [4]. However, it seems to the authors that Lemma 2 is not recognized explicitly.

We wish to note that the results of this section are valid for C^* algebras without the identity. Also, they are valid for suitably restricted Baer *-ring, since no metrical property is needed.

3. Applications. We shall apply the above results in some elementary special cases. At first, we shall call a C^* -algebra A is a factorial if the center Z of A consists of scalars.

Theorem 2. In a factorial C*-algebra, an automorphism is either inner or freely acting.

Proof. If a is a nonzero dependent element of an automorphism α , then a^*a is central by Lemma 1, so that $a^*a = \lambda$ for some scalar $\lambda > 0$ by the hypothesis. Since a is normal by Lemma 2, a is invertible, so that (1) implies

 $x^{\alpha} = axa^{-1}.$

If a=u|a| is the polar decomposition of a, then u is a unitary element of A and $|a|=\sqrt{\lambda}$, so that we have

 $(6') x^{\alpha} = uxu^*,$

(6)

instead of (6), that is, inner automorphisms of a factorial are unitarily inner, cf. [2; p. 15] and [5; Lemma 1].

Theorem 3 (Nakamura-Takeda-Kallman). In a factor, an automorphism α is outer if and only if α is freely acting.

Proof. A factor is naturally a factorial, so that Theorem 3 follows from Theorem 2.

Remark. Theorem 3 is proved at first by Nakamura and Takeda [5; Lemma 1] for finite factors; their proof based on the fact that a finite factor is algebraically simple. They proved essentially that if an automorphism α of a simple unital C*-algebra is outer then α is freely acting. Kallman [3] proved Theorem 3 in its generality based on his theorem which is given a proof in the below. Our proof is simpler and more elementary than theirs.

A completely analogous method gives the following generalization of a theorem of Kallman [3; Corollary 1.13]: We shall call an automorphism α ergodic if there is no element up to scalars which is invariant under α .

Theorem 4. An ergodic automorphism of a nontrivial C*-algebra is outer.

Proof. If an ergodic automorphism α is inner satisfying (6), then

a is dependent for α , so that a is invariant under α by Theorem 1, which is clearly impossible by the ergodicity of α .

It is well-known that all powers of an ergodic measure preserving automorphism of a nonatomic probability space are freely acting. Choda [1] generalized this to every continuous von Neumann algebra. We shall give here, by virtue of Lemma 2, a partial converse of these theorems:

Theorem 5. If α is an automorphism of a C*-algebra and α^n is freely acting for some n, then α is freely acting.

Proof. If α is not freely acting, then there is a nonzero dependent element *a* satisfying (1). Hence we have

$$a^n x = x^{\alpha^n} a^n$$
,

for all $x \in A$. Since α^n is freely acting by the hypothesis, we have $a^n=0$. Since a is normal by Lemma 2, we have a=0, which is a contradiction.

If A is a unital C*-algebra and B is a unital C*-subalgebra of A, then a positive linear transformation ε of A onto B is called an *expec*tation of A onto B in the sense of [6], cf. also [7], if

(7) $(ab)^{\epsilon} = a^{\epsilon}b,$ $(ba)^{\epsilon} = ba^{\epsilon},$ for every $a \in A$ and $b \in B$. An expectation ϵ is called *faithful* if $(a^*a)^{\epsilon} = 0$ implies a = 0.

For an automorphism α of A, a (unital) C^* -subalgebra B is called invariant under α if $B=B^{\alpha}=\{x^{\alpha}; x \in B\}$, and the set F of all invariant elements of α is called the *fixed subalgebra* for α .

Theorem 6. Let α be an automorphism of a unital C*-algebra Awith the fixed subalgebra F. Suppose that there is a faithful expectation ε of A onto an invariant unital C*-subalgebra B with $B \subset F^c$ where F^c is the relative commutant of F in A. If α is freely acting on B, then α is freely acting on A.

Proof. If a is a dependent element of α , then $a \in F$ by Theorem 1. By (1), we have $a^*ax = a^*x^{\alpha}a$ for any $x \in A$, so that

 $a^*ab = a^*b^aa = b^aa^*a$

for every $b \in B$ since $B \subset F^c$. Therefore, we have by (7) $(a^*a)^{\epsilon}b = (a^*ab)^{\epsilon} = (b^{\alpha}a^*a)^{\epsilon} = b^{\alpha}(a^*a)^{\epsilon}$,

so that we have $(a^*a)^{\epsilon} = 0$ by the hypothesis that α is freely acting on *B*. Hence a=0 by the faithfulness of ϵ , and α is freely acting on *A*.

The following corollaries are now obvious by Theorem 6's proof:

Corollary 1. If there is a faithful expectation of A onto F^c , then the free action of α on F^c implies the free action of α on A.

Corollary 2. Kallmann the free action of an automorphism α on Z implies the free action of α on A.

Remark. The assumptions of the above Theorem are satisfied

No. 7] Dependent Elements of Automorphism of C^* -algebra

when the algebra A is a finite von Neumann algebra, by the theorem of Umegaki [7].

At this end, we shall generalize a theorem due to Nakamura and Takeda [5; Lemma 2] for C^* -algebras:

Theorem 7. If A is an abelian C^* -algebra on which an automorphism α acts, then the set D of all dependent elements of α is an ideal in which every element is invariant under α .

Proof. If $a, b \in D$ and $x, y \in A$, then we have

 $(a+b)x = ax+bx = x^{\alpha}a+x^{\alpha}b = x^{\alpha}(a+b)$

and

 $(ya)x = yax = yx^{\alpha}a = x^{\alpha}ya;$

hence D is an ideal. The closedness of D is obvious. The remainder of the theorem follows from Theorem 1.

4. A remark. If A is a von Neumann algebra on which an automorphism α acts, and if a is a dependent element of α , then there is a unitary operator $u \in A$ by Lemma 2 in the polar decomposition of a: Z.

$$(8) a=u|a|, |a|\in$$

Hence, by (1), (8) and Lemma 1, we have (9) $ux|a|=x^{\alpha}u|a|.$

Therefore, by (9), we have the following theorem which is a key for the Kallman decomposition of automorphisms of von Neumann

algebras: Theorem 8 (Kallman). If a is a dependent element of an auto-

morphism α in a von Neumann algebra, then α is (unitarily) inner on the central carrier of a.

References

- [1] H. Choda: On ergodic and abelian automorphism groups of von Neumann algebras. Proc. Japan Acad., 47, 982-985 (1971).
- [2] J. Dixmier: Les algebres d'operateurs dans l'espace Hilbertien. Gauthier-Villars, Paris (1957).
- [3] R. Kallman: A generalization of free action. Duke Math. J., 36, 781-789 (1969).
- [4] P. R. Halmos: A Hilbert Space Problem Book. Nostrand, Princeton (1967).
- [5] M. Nakamura and Z. Takeda: On some elementary properties of the crossed products of von Neumann algebras. Proc. Japan Acad., 34, 489-494 (1958).
- [6] M. Nakamura and T. Turumaru: Expectations in an operator algebra. Tohoku Math. J., 6, 182-188 (1954).
- [7] H. Umegaki: Conditional expectations in an operator algebras. Tohoku Math. J., 6, 177-181 (1954).