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The purpose of this note is to give some remarks on the
representations of semi-simple Lie groups. In this note we give
only the Definitions and Theorems, since we shall give discussions
elsewhere in detail.

Let G be a connected Lie group, and CX(G) be the algebra
composed of indefinitely differentiable complex-valued functions with
compact supports.

Let U(G) be the subalgebra of D(G) composed of all elements
whose supports reduce to the identity, then U(G) is isomorphic to
the universal enveloping algebra B" corresponding to G.

Let D(G) be the center of D(G) and ¢(s€G) be the point
measure with mass 1 at s.

Then we can easily show that a(€ D(®)) belongs to D.(G) if and
only if eoe-1 = a for all seG. Let UJ(G) be the center of U(®),
then U(G)CTD.G).

Let {Il(x), D} be a strongly continuous representation of G on
a Banach space  and {II(f), §} be the corresponding representa-
tion of CX(G). Let B be the operator algebra composed of all
bounded operators on . We shall state

Definition 1. A representation {II(x), B} is n-fold irreducible,
if there exists an element II(f) such that

()~ Ball<e (=1,2,...,7)

for arbitrary at most n elements z;, ..., 2,, B€ B and «>0.
Proposition. If ({II(z), $} is 2-fold irreducible, it is quasi-
simple.?

In the following, we shall suppose that G is a connected semi-
simple Lie group with a decomposition G = K-S(K NS = (e)) where
K is a maximal compact subgroup and S is a quasi-nilpotent sub-
group® in the sense of Harish-Chandra.® Since the above condition
i.e. G= K-S, seems to be indispensable at certain essential points
in our note, we have decided for the sake of uniformity to assume
it throughout. Let P be the set of all equivalence classes of ir-
reducible representations of K and x,(k) be the character of d(e P).

We shall denote the equivalence class of irreducible represen-
tation of U(K) which corresponds to d(€ P) by the same notation d.
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Lemma 1. Let @(x) be an analytic function on G and p be a
Radon measure with a compact support. Then (up)(x) and (ep) ()
are analytic functions.

Lemma 2. Let {U(x), L(G)} be the left regular representation
of G. If ae D(@) satisfies

f <U@e, f > da() =0
(< > is the scalar product of LAG)) for all analytic coefficients, then

a = 0. (Cf. (8) Theorem 3. p. 20.)
Let A be a vector space composed of all analytic function on

Definition 2. We define that a variable «€ D(G) converges to
a,€ D(G) if p(a)® converges to ¢(a,) for all p e A.

Then, by Lemma 2, D(G) is a loeally convex topological vector
space and U(G) is everywhere dense in D(G).

We shall consider that U(G) and C(G) are locally convex topo-
logical vector spaces by the relative topologies.

Let {II(z), $} be a strongly continuous representation of G on
a Banach space  and {II(f), §} be the corresponding representa-
tion of CX(G), V be the Garding subspace™ of . Then we obtain
a representation {II, V} of D(G) on V.?

We shall put

Definition 3. A representation is strongly cyclic if it satisfies

[TI(GYe]® for some eedze}pV(d).“’

Moreover, in this case ¢ is called a strongly cyclic vector.

Let {TI(z), 9} be a strongly cyclic representation with an in-
finitesimal character.? Then by Harish-Chandra’s theorem
[M(UG)e] = $ and II(UG))e =(§P$(d), dim $(d) < « for all deP.

Put M, = {a|I(a)e = 0 a€ UG}, then M, is a closed left ideal in
U(@), and (U(G)/M)=2] (UG)/M)(d) and dim (UG)Me)(d)< e .

Definition 4. We say that a closed left ideal M of U(G) is an
F-left ideal if it satisfies
(U(@)/Mm =d§(U(G)/9R)(d) and dim (U(G)/M)(d)< oo .

Lemma 3. Define linear operator L., R.(a€ U(G) or M™(G))
on D(G) as follows: L,3= af and R,8 = Ba. Then L, and R, are
continuous.

Theorem 1. Let M be a closed left ideal of U(G), then M*®
is an invariant subspace of D(G) under M(G) and U(G), and
MA~CS(G@) is a closed left-ideal and is invariant under M(G) and
UG, and M ~C(@AY~UG) =M. Moreover if M is an F-left
ideal and N is a closed left ideal of C(G) and W~U(G) = M, then
AU ~C(G) =N and N is a regular left ideal, and further-
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more in a representation {IIg, C2(G)/N} of G on a topological vector
space C(G)/N, the -corresponding representation, {IIn, W, =
2 (C(@IN)()} of U(GR) is equivalent to the canonical representation

{Hm, UG/M} . In particular if M is a maximal F-left ideal, N is
maximal.

Here we shall sketch the proof of Theorem 1. From the
density of U(G) and the continuity of L,, R,(a€ M(G) or U(G)), we
can easily see that (CX(@M)P = (M(G)M) = (D(G)M) =M, and so
M and M ~C(G@) are invariant under M(G) and U(G), and more-
over M~CX(@)Y~UG) =M

In particular let M be an F-left ideal and a—>a, be the natural
mapping from U(G) on U(G)/M.

Then if ape UG)/M(d"), X,» transforms according to d’' in the
space D(G)/M®. On the other hand it is clear that ,x transforms
according to d in the space D(G)/I.

Hence if d=d', Xso=0 (modM*) and so (U(G)+M) M, is
finite-dimensional.

From some additional considerations with the above facts, we
can show Theorem 1.

Remark. To imbed the above representation {IIx, C2(G)/R} of
G into a representation on a Banach space seems to be interesting.
However the author could not show this fact without some addi-
tional conditions.

Corollary 1. Let {II(x), D} be a strongly cyclic representation
with an infinitesimal character on a Banach space $, and
= {a|ll(e)e =0, € U(G)} and N = {f|II(fle =0, feCx(G},
where ¢ is a strongly cyclic vector. Then N is a regular closed
left ideal, and M~CX(G) =N and W~UG) =M. Moreover if
{II(z), $} is irreducible, N is maximal. (Cf. (2) and Godement,”
Theorem 6, p. 513.) We shall state

Definition 5. A continuous linear functional on U(G) is a
state if it satisfies

@(@*%a) = 0 for all ae€ U(G).

It is clear that if () is an analytic positive definite function
i.e. Y(x) is analytic and (y*y) = 0 for all ye M(G) then it can be
considered to be a state.

Let @ be a state and M, = {a| p(a*a) =0, a€ U(G)}, then M,
is a closed left ideal of U(G). We shall say I, to be the kernel
of o.

Definition 6. We say that a state is an F-state if it has an F-
left ideal as the kernel.
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Theorem 2. If @ is an F-state on U(G), then it is an analytic
positive definite function on G, and if M, is the kernel of ¢, the
canonical representation {Ilw,, U(G)/M,} of U(G) is equivalent to the
representation of U(G) corresponding to a unitary representation
{IT,, $,}'V constructed by ¢.

Corollary 2. In order that a spherical function®” ¢@z(r) is
positive definite, it is necessary and sufficient that it satisfies
ga(a*a) = 0 for all ae UG).

Corollary 3. If M is an F-left ideal and M'(O M) is a left
ideal, then M is an F-left ideal.

Lemma 4. Let {II(x), §} be an irreducible representation
with an infinitesimal character of G on a Banach space. Put
W = 2 H(d), then for an arbitrary linear transformation 7' in W

Wlth a ﬁmte-dlmensmnal domain D(T"), there exists an operator
II(f) (fe C2(@)) such that II(f) =T on D).
From Lemma 4, we obtain the following theorem.

Theorem 3. In order that an irreducible representation
{Il(z), } with an infinitesimal character is infinitesimally equiva-
lent to a unitary irreducible representation on a Hilbert space,
it is necessary and sufficient that a spherical function o¢f (z)(3: 0)
is positive definite.

From Corollary 2 and Theorem 8 we can easily show the follow-
ing result of Harish-Chandra :®

Theorem (Harish-Chandra®). Let {II(z), §} be an irreducible
representation with an infinitesimal character of G on a Banach
space. Put W = Zéb(d) Suppose it is possible to define a new

scalar product ( , )’ in W such that

(@), ¥) = (p, a*W) (p, Y€ W, aeGy).®

Let £’ be the Hilbert space obtained by completing W with
the corresponding metric. Then there exists an irreducible unitary
representation I’ of G on 9’ such that

1 ((exp tayy—}, (te R, lim. in )

Mo = lim 7
for all ae@,, and r€ W. Moreover II’ is uniquely determined. For,
from the property of the scalar product ( , ), we can immediate-
ly show that ¢ (a*a) = S,(E(d)II(e*a)E(d)) = 0 for all a€ U(G).

Remark. We can easily show that the above Theorem of
Harish-Chandra can be altered by the following form which seems
to be convenient than the above :

Let {II(z), $} be an irreducible representation of G with an
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infinitesimal character. Put W =dEZP H(d). Suppose it is possible to
define a new scalar product ( , ) in W such that
(i)  (T@p, ¥ = (@ W@*W)  (p, v € W, aeS'?)
i) B, ¥) = (@, LB (@, ¥ € H(dy) (= (0)
for some d,e P, Be K,"»
(iii) $(d,) is orthogonal to every H(d) (d % dy)
with respect to the new secalar product.

Then {II(z), $} is infinitesimally equivalent to an irreducible
unitary representation.
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