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15. On the Structure o Algebraic Systems
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Department of Mathematics, Y,amaguchi University

(Comm. by .K. SHODA, M.J.A., Feb. 12, 1954)

The structure of an algebraic system A has been discussed by
K. Shoda under the iollowing conditions:

SI. A has a null-element.
SII. The subsystem generated by any two normal subsystems of A

is normal in A.
SIII. The meromorphism of any two algebraic systems which are

homomorphic to A is aways class.meromorphism.
(SII and SIII are assumed for any subsystem of A.)
G. Birkhoff has introduced in his book) the following condition

which is equivalent to SIII" all congruences on A are permutable.
In the present paper we shall give a new definition of normal

subsystems, and study on the normal subsystems and the congruences
of an algebraic system A ( 1). Moreover under weaker conditions
than SII, SIII ( 2), we shall discuss the Jordan-HSlder-Schreier theorem
( 3) and the Remak-Schmidt-Ore theorem for A (4).

1. Normal Subsystems and Congruences. Throughout this
paper we put the following conditions on the algebraic system A to
keep out the complication.

O. All compositions are binary and single valued, moreover any
two elements nay be composable by any composition.

I. A has a null-element e (eae--e for any composition a).
A subset B of A is called a subsystem if B is closed under any

composition of A and contains e.
Let f($,..., $.) be a polynomial by compositions of A. In the

following f(X, x., ..., x) denotes the set {f(x, x,..., x) x e X},
where XA, x.,..., x,e A. Then f(X, x.,..., x,) is of course a
subset of A.

Definition 1. A subset C is called a coset if and only if the
following condition holds for any polynomial f($,..., ) and any
elements x., x, e A,

f(C, x,... x)Cq implies f(C, x.,... x,)C.
A coset C is called a normal subsystem, when C forms a subsystem
of A.

Theorem 1. Any coset C is a residue class of a congruence and
conversely.
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Proof. We define ab (a, b A) when there exist polynomials
f, ..., f such that

a ...,
f (C,

A(C, .., b.

It is easily verified that the relation 0 is a congruence on A. Since
Ccf(C) for he polynomial f($)-$, C is contained in a class C’
corresponding to the congruence 0. Then C=C follows from the
definitions of 0 and the coset. Therefore 0 is a congruence having
a giving coset C as a class. The converse follows from the property
of the congruence.

Remark. In order that any two elements of C are to be con-
gruent by a congruence , it is necessary that has the property
of 0. Hence the congruence 0 is the least one corresponding to the
coset C.

K. Shoda and G. Birkhoff have defined normal subsystems as
follows" The residue class of A with respect to a congruence which
contains e is called a normal subsystem of A. This definition is
evidently equivalent to our definition.

In the following 0 denotes the congruence of a subsystem L,
O(B) the congruence naturally induced by 0 on BL. B/O denotes
the residue class system of B with respect to O(B). For a subset
MCB, we denote by (MIO:(B)) the set {x" x%(f-m e M}. If M is a
subsystem of B, then the set (M IOn(B)) forms clearly a subsystem
of B.

Theorem 2. Let C be any subsystem such that
Then C/O: and B/O are isomorphic.

Proof. Let {Q} be the set of all cosets of C corresponding to
O(C), and let B=QB, then {B} is the set of all the cosets of B
corresponding to O(B). And the correspondence CB is evidently
an isomorphism of C/O and

Theorem 3. Let LDBDC, MDC, and O(C)(C). en the
congruence p(C) can be extended on the subsystem (C[O.(B)).

Proof. Let a, b e (C [O(B)). We define ab if and only if there
exist x, x C such that a.I’(’x(e)xo. Then it is easily veri-
fied that the relation is a congruence on (CiO(B)). And by O(C)
p(C) the congruence is equivalent to p(C) on C.

In the following we denote by ([0(B)J the extended con-
gruence of ( as in Theorem 3.

Definitioa 2. Let N be a normal bsystem of A. The congruence
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is called a lower-congruence if 0 is a least congruence correspond-
ing to N.

The lower-congruence corresponding to iV may be constructed as
in the proof of Theorem 1. Hence we can easily prove the following:

Theorem 4. The join of any two lower-congruences is a lower-
congruence.

2. Conditions for Algebraic Systems. In order o extend
our heory, we discuss some conditions for he algebraic system A.

Let O(B)be a congruence on a subsystem B. We denote by
S(O(B)) the coset containing x e B which corresponds to O(B), and
for convenience, by S(O(B)) the normal subsystem S(O(B)).

We consider the following conditions:
II. (S(O)lq)=(S(o)IO) for any lower-congruences O, q on A.
II*. (S(O(LM))[q,,(LM))=(S(o(LM))I@(LM)) for any

lower-congruences and q on L and M respectively, where L, M are
any subsystems which appear in normal chains of A.

III. (S(t)lo)=(S(cp)lt) for an element x satisfying S(0)S.(go).,
where and q are lower-congruences on A.

Using our notations we can describe the condition SIII as follows
(S,(O)lq)=(S(q)le) for x, y satisfying S(e),S.,()..

Then the condition SIII* that any subsystem B of A satisfies the
condition SIII can be described as ollows:

(S(0(B))Io(B))=(S(o(B))]0(B)) for x, y satisfying

By the above descriptions of the conditions we can easily see the
following implications:

SIII*->SIII->III->II and SIII*-II*->II.
We now prove the
Theorem 5. The condition SII implies II.
Proof. Let 0, q be any lower-congruences on A. Let o be the

lower-congruence corresponding o the subsystem B generated by
S(0) and S(cp). Since the subsystem (S(o)l) contains S(0)and S(cp),
S()=B(S(O)Io). On the other hand, S(o)S() implies cp, and
herefore S()(S(0)[qo). Hence S()--(S(e)I). Similarly S()=
(S((p)lO). Therefore we get

Theorem 6. If A has the condition II, then the set of all the
normal subsystems of A forms a modular lattice under meet, the inter-
section and join S(O)S(q)--(S(O)Io) where O, q are lower-congruences
on A.

Proof. Let t, (p be lower-congruences. Then S(0)S(q)=S(0q),
since S(O)S(q)=(S(O)Io)=(S(q)lO). By the definition we have S(O)
S(cp)=S(0). 0(p is not always a lower-congruence, we denote
by 0cp the lower-congruence corresponding to S(tq). Then
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(s(e) s()) s(e)=s(e ) s(e) s(e e) s(g) s((g ) e)
Since 0 is a lower-congruence, (S(O)S())S(O)=S(O)S(O)
=S((e)0)=S(O). Hence 3 forms a lattice.

Let , be lower-congruences. Let S()S() and S()
S()=S()S(O). From S()S() we get <. Then (S(O)cp)/
=S()S(O)/=S()S(0)/S()/. Hence S()/ contains
at least one coset different from S(). Hence S()S(O)S()
S(O). Therefore 9 is modular.

3. Normal Chains. We denote by B//N the residue class
system of B(A) with respect to the greatest congruence corre-
sponding to a normal subsystem N of B.

Theorem 7. (Schreier theorem for normal chains) If A has the
condition II*, then any two finite normal chains
( 1 ) A=AoS(o(A.o))=A...LS(,_(A,_))--A=e,
( 2 A=BoS(o(Bo))=B...S(_(B_))=B=e
can be refined by interpolation of terms A.=(ABIO(A)) and B,

S--(A.BI.;(B)) such that A //A+ and ,I/B+, are isomorphic,
where (A),(B) are lower-congruences on A, B respectively.

Proof. Let (AB)-(AB)(AB). Then (AB)I
.8():] is just defined on (ABie(A)). And we get

S( (A B)10(A,)J): (S((A. B))O(A))
(S(e(AB) (AB))le(A))- ((S((A, B))I(A
(S((A B))I(A)):(A S((B))Ie(A))
(AB+ e(A,))=A,+.

Hence (1) is refined by interpolation of terms A,. Similarly (2) is
refined by interpolation of terms B,:.

Sine (AB! o(AB)le(A))-(ABIe(A)), we get

B/(AB)ie(A) AB/(AB).
Similarly (A Ble(B))/[(AB)I(B) AB/(AB). Hence

AA,/(B)IO(A,)B,,/(AB)I(B) Therefore ,//.+
B,,//B+..

Remark. The Schreier theorem for normal chains consisting of
normal subsystems ollows rom the modularity of the lattice 9.

4. Direct Decompositions. In the ollowing we assume that
A has not only the conditions 0 and I but also III.

Theorem 8. Let O, be any lower-congruences on A such that
8:0, then S(O) and S(O) xS() are isomorphic.

Proof. For any element x in S(), we denote by S,(O) the
coset of S()/O containing x, and by S() the coset o S()/
containi x. Then the correspondence x(S(), S(O)) is a homo-
morphism of S() onto subsystem B of S(0)/ x S()/e.
Since 6:0, the homomorphism is an isomorphism. By the condi-
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tion III, we get S(q),-,S(8)- for any x, y in S(,o). Hence B=
S(,q)/q x S(,cp)/. Using <p=0, we get easily

Similarly .S(q)/S(q). Hence S(,o) and S()S((p) are iso-
morphic,

Theorem 9. Let A=S(O)...S(,) be any representation of
A as a direct join decomposition in the lattice .. Then A is isomorphiv
to S(e) ><... S(e) if A has the condition (,): S()-e implies --0.

Proof. There exist lower-congruences ’ such that S(O)--S(e).
Putting in place of , we get by the assumption
(S(O’) S(O_))S(O)--e. Hence S(O, ,’_)S(O’.)-e,
S((Oq,-,... ,’_)O’)-e. Using the condition (,), we get (’,-..
,_),0--0. Hence by Theorems 4 and 8, we get S(,-.-,)
S(O’ ,’,_) S(’). Therefore AS(O) ><... x S().

Theorem 10. Let AA ><... xA be any representation of A
as a direct product. If A has not an infinite normal chain, then
there exist lower-congruences ,..., such that S(O)-A and
A=S(e)... S(,) is a direct join decomposition in the lattice .

Proof. We denote by A a,,(a, ..., a) e A >< >< A the cor-
respondence of the isomorphism of A and A --. A. We define

0t(a,..., a),,av (b,..., b) when a-b for ki. Then is a
congruence on A such that S(6)A. Let , ..., , be lower-
congruences such that S()=S(O), then AS()... S(e). Since,..., are independent, ,..., are independent. Hence by
Theorems 4 and 8, S(O,... ,)S(O--.._) S(). Therefore
S(... ,,)S(,) x... x S(e,)A. If S(,..- -e)A, then
there exists an infinite normal chain of A. This contradicts the
assumption of this theorem. Hence A=S(O, ,e)--S(),---
,S(O). And it is evident that A-,S(),... S() is a direct join
decomposition in the lattice a.

Theorem 11. (Remak-Schmidt-Ore theorem for direct join
compositions) Let A--S(O)...S()--S(qa)...S(qa) be any
two representations as a direct join decomposition of indecomposable
factors in the lattice . If (i) A has the condition. (,), (ii) 9a has
finite length, then n=m, and S(), S(q) are pairwise isomorphic,
moreover S(O) and S(qa) are mutually replaceable.

Proof. By the modularity of , we get that n=m, and S(6),
S(q) are pairwise projective, moreover S(O) and S(cp)are mutually
replaceable. Assuming that e,..., e,, (p,..., q are low,r-con-
gruences without loss of generality, we get that 0*---e,.-.
,+,.-- ,e, is a lower-congruence. Hence A/* =(S(O)IO*)/OS(O)
/O=S(O,)/O ,.O* =S(O). Similarly A/O* (S(c,o)IO*)/O*S(cp)/O* S(cp)!
q,0*--S(o). ThereforeS(o)S(p).
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Theorem 12. (Remak-Schmidt-Ore theorem for direct procluct
decompositions) Let AA ... A,B B be any two rep-
resentations as a direct produc$ of indecomposable factors. If (i) A
has the condition (.), (ii) A has no infinite normal chain, then n=m,
and A, B are pairwise isomorphic.

Proof. This theorem is immediate by Theorems 9,10 and 11.
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