15. On the Structure of Algebraic Systems

By Tsuyoshi Fujiwara

Department of Mathematics, Yamaguchi University (Comm. by K. SHODA, M.J.A., Feb. 12, 1954)

The structure of an algebraic system A has been discussed by K. Shoda^{2,5/4}) under the following conditions:

SI. A has a null-element.

SII. The subsystem generated by any two normal subsystems of A is normal in A.

SIII. The meromorphism of any two algebraic systems which are homomorphic to A is always class-meromorphism.

(SII and SIII are assumed for any subsystem of A.)

G. Birkhoff has introduced in his book¹⁾ the following condition which is equivalent to SIII: all congruences on A are permutable.

In the present paper we shall give a new definition of normal subsystems, and study on the normal subsystems and the congruences of an algebraic system A (§1). Moreover under weaker conditions than SII, SIII (§2), we shall discuss the Jordan-Hölder-Schreier theorem (§3) and the Remak-Schmidt-Ore theorem for A (§4).

§ 1. Normal Subsystems and Congruences. Throughout this paper we put the following conditions on the algebraic system A to keep out the complication.

0. All compositions are binary and single valued, moreover any two elements may be composable by any composition.

I. A has a null-element e (eae = e for any composition a).

A subset B of A is called a *subsystem* if B is closed under any composition of A and contains e.

Let $f(\xi_1, \ldots, \xi_n)$ be a polynomial by compositions of A. In the following $f(X, x_2, \ldots, x_n)$ denotes the set $\{f(x, x_2, \ldots, x_n) : x \in X\}$, where $X \subset A, x_2, \ldots, x_n \in A$. Then $f(X, x_2, \ldots, x_n)$ is of course a subset of A.

Definition 1. A subset C is called a coset if and only if the following condition holds for any polynomial $f(\xi_1, \ldots, \xi_n)$ and any elements $x_2, \ldots, x_n \in A$,

 $f(C, x_2, ..., x_n) \frown C \neq \phi$ implies $f(C, x_2, ..., x_n) \subseteq C$. A coset C is called a normal subsystem, when C forms a subsystem of A.

Theorem 1. Any coset C is a residue class of a congruence and conversely.

Proof. We define $a \stackrel{\circ}{\sim} b$ $(a, b \in A)$ when there exist polynomials f_1, \ldots, f_n such that

It is easily verified that the relation θ is a congruence on A. Since $C \subset f(C)$ for the polynomial $f(\xi) = \xi$, C is contained in a class C' corresponding to the congruence θ . Then C = C' follows from the definitions of θ and the coset. Therefore θ is a congruence having a giving coset C as a class. The converse follows from the property of the congruence.

Remark. In order that any two elements of C are to be congruent by a congruence φ , it is necessary that φ has the property of θ . Hence the congruence θ is the least one corresponding to the coset C.

K. Shoda and G. Birkhoff have defined normal subsystems as follows: The residue class of A with respect to a congruence which contains e is called a normal subsystem of A. This definition is evidently equivalent to our definition.

In the following θ_L denotes the congruence of a subsystem L, $\theta_L(B)$ the congruence naturally induced by θ_L on $B \subset L$. B/θ_L denotes the residue class system of B with respect to $\theta_L(B)$. For a subset $M \subset B$, we denote by $(M | \theta_L(B))$ the set $\{x : x \stackrel{\theta_L(B)}{=} m \in M\}$. If M is a subsystem of B, then the set $(M | \theta_L(B))$ forms clearly a subsystem of B.

Theorem 2. Let C be any subsystem such that $(B|\theta_L) \supset C \supset B$. Then $C|\theta_L$ and $B|\theta_L$ are isomorphic.

Proof. Let $\{C_i\}$ be the set of all cosets of C corresponding to $\theta_L(C)$, and let $B_i = C_i \frown B$, then $\{B_i\}$ is the set of all the cosets of B corresponding to $\theta_L(B)$. And the correspondence $C_i \leftrightarrow B_i$ is evidently an isomorphism of C/θ_L and B/θ_L .

Theorem 3. Let $L \supset B \supset C$, $M \supset C$, and $\theta_L(C) \leq \varphi_M(C)$. Then the congruence $\varphi_M(C)$ can be extended on the subsystem $(C|\theta_L(B))$.

Proof. Let $a, b \in (C | \theta_L(B))$. We define $a \sim b$ if and only if there exist $x_1, x_2 \in C$ such that $a \stackrel{\theta_L(B)}{=} x_1 \stackrel{\varphi_M(C)}{=} x_2 \stackrel{\theta_L(B)}{=} b$. Then it is easily verified that the relation \sim is a congruence on $(C | \theta_L(B))$. And by $\theta_L(C) \leq \varphi_M(C)$ the congruence \sim is equivalent to $\varphi_M(C)$ on C.

In the following we denote by $[\varphi_{\mathcal{M}}(C)|\theta_{\mathcal{L}}(B)]$ the extended congruence of $\varphi_{\mathcal{M}}(C)$ as in Theorem 3.

Definition 2. Let N be a normal subsystem of A. The congruence

No. 2]

 θ is called a lower-congruence if θ is a least congruence corresponding to N.

The lower-congruence corresponding to N may be constructed as in the proof of Theorem 1. Hence we can easily prove the following:

Theorem 4. The join of any two lower-congruences is a lower-congruence.

§ 2. Conditions for Algebraic Systems. In order to extend our theory, we discuss some conditions for the algebraic system A.

Let $\theta(B)$ be a congruence on a subsystem B. We denote by $S_x(\theta(B))$ the coset containing $x \in B$ which corresponds to $\theta(B)$, and for convenience, by $S(\theta(B))$ the normal subsystem $S_{\epsilon}(\theta(B))$.

We consider the following conditions:

II. $(S(\theta)|\varphi) = (S(\varphi)|\theta)$ for any lower-congruences θ , φ on A.

II*. $(S(\theta_L(L \cap M))|\varphi_M(L \cap M)) = (S(\varphi_M(L \cap M))|\theta_L(L \cap M))$ for any lower-congruences θ_L and φ_M on L and M respectively, where L, M are any subsystems which appear in normal chains of A.

III. $(S(\theta)|\varphi) = (S_x(\varphi)|\theta)$ for an element x satisfying $S(\theta) \frown S_x(\varphi) \neq \phi$, where θ and φ are lower-congruences on A.

Using our notations we can describe the condition SIII as follows:

 $(S_x(\theta)|\varphi) = (S_y(\varphi)|\theta) \text{ for } x, y \text{ satisfying } S_x(\theta) \cap S_y(\varphi) \neq \phi.$

Then the condition SIII^{*} that any subsystem B of A satisfies the condition SIII can be described as follows:

 $(S_{x}(\theta(B))|\varphi(B)) = (S_{y}(\varphi(B))|\theta(B)) \text{ for } x, y \text{ satisfying}$ $S_{x}(\theta(B)) \land S_{y}(\varphi(B)) \neq \phi.$

By the above descriptions of the conditions we can easily see the following implications:

 $SIII^* \rightarrow SIII \rightarrow III \rightarrow II$ and $SIII^* \rightarrow II^* \rightarrow II$.

We now prove the

Theorem 5. The condition SII implies II.

Proof. Let θ , φ be any lower-congruences on A. Let ω be the lower-congruence corresponding to the subsystem B generated by $S(\theta)$ and $S(\varphi)$. Since the subsystem $(S(\theta)|\varphi)$ contains $S(\theta)$ and $S(\varphi)$, $S(\omega)=B \subset (S(\theta)|\varphi)$. On the other hand, $S(\omega) \supset S(\varphi)$ implies $\omega \ge \varphi$, and therefore $S(\omega) \supset (S(\theta)|\varphi)$. Hence $S(\omega)=(S(\theta)|\varphi)$. Similarly $S(\omega)=(S(\varphi)|\theta)$. Therefore we get $(S(\theta)|\varphi)=(S(\varphi)|\theta)$.

Theorem 6. If A has the condition II, then the set \mathfrak{L}_A of all the normal subsystems of A forms a modular lattice under meet, the intersection and join $S(\theta) \smile S(\varphi) = (S(\theta)|\varphi)$ where θ , φ are lower-congruences on A.

Proof. Let θ, φ be lower-congruences. Then $S(\theta) \smile S(\varphi) = S(\theta \smile \varphi)$, since $S(\theta) \smile S(\varphi) = (S(\theta)|\varphi) = (S(\varphi)|\theta)$. By the definition we have $S(\theta) \frown S(\varphi) = S(\theta \frown \varphi)$. $\theta \frown \varphi$ is not always a lower-congruence, we denote by $\overline{\theta \frown \varphi}$ the lower-congruence corresponding to $S(\theta \frown \varphi)$. Then
$$\begin{split} &(S(\theta) \frown S(\varphi)) \cup S(\theta) = S(\theta \frown \varphi) \cup S(\theta) = S(\overline{\theta \frown \varphi}) \cup S(\theta) = S(\overline{\theta \frown \varphi}) \cup \theta) = S(\theta), \\ &\text{Since } \theta \cup \varphi \text{ is a lower-congruence, } (S(\theta) \cup S(\varphi)) \frown S(\theta) = S(\theta \cup \varphi) \frown S(\theta) \\ &= S((\theta \cup \varphi) \frown \theta) = S(\theta). \quad \text{Hence } \mathfrak{L}_A \text{ forms a lattice.} \end{split}$$

Let θ , φ_i be lower-congruences. Let $S(\varphi_1) \subseteq S(\varphi_2)$ and $S(\varphi_1) \cup S(\theta) = S(\varphi_2) \cup S(\theta)$. From $S(\varphi_1) \subseteq S(\varphi_2)$ we get $\varphi_1 < \varphi_2$. Then $(S(\theta)|\varphi_1)/\varphi_1 = S(\varphi_1) \cup S(\theta)/\varphi_1 = S(\varphi_2) \cup S(\theta)/\varphi_1 \supseteq S(\varphi_2)/\varphi_1$. Hence $S(\varphi_2)/\varphi_1$ contains at least one coset different from $S(\varphi_1)$. Hence $S(\varphi_1) \cap S(\theta) \subseteq S(\varphi_2) \cap S(\theta)$. Therefore \mathfrak{L}_A is modular.

§ 3. Normal Chains. We denote by B//N the residue class system of $B(\subset A)$ with respect to the greatest congruence corresponding to a normal subsystem N of B.

Theorem 7. (Schreier theorem for normal chains) If A has the condition II^* , then any two finite normal chains

(1) $A = A_0 \supset S(\theta_0(A_0)) = A_1 \supset \cdots \supset S(\theta_{n-1}(A_{n-1})) = A_n = e,$

(2) $A = B_0 \supset S(\varphi_0(B_0)) = B_1 \supset \cdots \supset S(\varphi_{m-1}(B_{m-1})) = B_m = e$ can be refined by interpolation of terms $A_{i,j} = (A_i \cap B_j | \theta_i(A_i))$ and $B_{i,j} = (A_i \cap B_j | \varphi_j(B_j))$ such that $A_{i,j} / | A_{i,j+1}$ and $B_{i,j} / | B_{i+1,j}$ are isomorphic, where $\theta_i(A_i), \varphi_j(B_j)$ are lower-congruences on A_i , B_j respectively.

Proof. Let $\omega(A_i \cap B_j) = \theta_i(A_i \cap B_j) \cup \varphi_i(A_i \cap B_j)$. Then $[\omega(A_i \cap B_j)|$ $\theta_i(A_i)]$ is just defined on $(A_i \cap B_j|\theta_i(A_i))$. And we get

$$\begin{split} S([\omega(A_i \cap B_j)|\theta_i(A_i)]) &= (S(\omega(A_i \cap B_j))|\theta_i(A_i)) \\ &= (S(\theta_i(A_i \cap B_j) \cup \varphi_j(A_i \cap B_j))|\theta_i(A_i)) = ((S(\varphi_j(A_i \cap B_j))|\theta_i(A_i))) \\ &= (S(\varphi_j(A_i \cap B_j))|\theta_i(A_i)) = (A_i \cap S(\varphi_j(B_j))|\theta_i(A_i)) \\ &= (A_i \cap B_{j+1}|\theta_i(A_i)) = A_{i,j+1}. \end{split}$$

Hence (1) is refined by interpolation of terms $A_{i,j}$. Similarly (2) is refined by interpolation of terms $B_{i,j}$.

Since
$$(A_i \cap B_j | [\omega(A_i \cap B_j) | \theta_i(A_i)]) = (A_i \cap B_j | \theta_i(A_i))$$
, we get
 $(A_i \cap B_j | \theta_i(A_i)) / [\omega(A_i \cap B_j) | \theta_i(A_i)]$
 $\cong A_i \cap B_j / [\omega(A_i \cap B_j) | \theta_i(A_i)] = A_i \cap B_j / \omega(A_i \cap B_i).$

Similarly $(A_i \cap B_j | \varphi_j(B_j)) / [\omega(A_i \cap B_j) | \varphi_j(B_j)] \cong A_i \cap B_j / \omega(A_i \cap B_j)$. Hence $A_{i,j} / [\omega(A_i \cap B_j) | \theta_i(A_i)] \cong B_{i,j} / [\omega(A_i \cap B_j) | \varphi_j(B_j)]$. Therefore $A_{i,j} / A_{i,j+1} \cong B_{i,j} / B_{i+1,j}$.

Remark. The Schreier theorem for normal chains consisting of normal subsystems follows from the modularity of the lattice $\mathfrak{L}_{\mathcal{A}}$.

§4. Direct Decompositions. In the following we assume that A has not only the conditions 0 and I but also III.

Theorem 8. Let θ , φ be any lower-congruences on A such that $\theta \frown \varphi = 0$, then $S(\theta \smile \varphi)$ and $S(\theta) \times S(\varphi)$ are isomorphic.

Proof. For any element x in $S(\theta \smile \varphi)$, we denote by $S_x(\theta)$ the coset of $S(\theta \smile \varphi)/\theta$ containing x, and by $S_x(\varphi)$ the coset of $S(\theta \smile \varphi)/\varphi$ containing x. Then the correspondence $x \rightarrow (S_x(\varphi), S_x(\theta))$ is a homomorphism of $S(\theta \smile \varphi)$ onto a subsystem B of $S(\theta \smile \varphi)/\varphi \times S(\theta \smile \varphi)/\theta$. Since $\theta \frown \varphi = 0$, the homomorphism is an isomorphism. By the condition III, we get $S_x(\varphi) \cap S_y(\theta) \neq \phi$ for any x, y in $S(\theta \smile \varphi)$. Hence $B = S(\theta \smile \varphi)/\varphi \times S(\theta \smile \varphi)/\theta$. Using $\theta \frown \varphi = 0$, we get easily

 $S(\theta \smile \varphi)/\varphi = (S(\theta)|\varphi)/\varphi \cong S(\theta)/\theta \frown \varphi = S(\theta).$

Similarly $S(\theta \smile \varphi)/\theta \cong S(\varphi)$. Hence $S(\theta \smile \varphi)$ and $S(\theta) \times S(\varphi)$ are isomorphic,

Theorem 9. Let $A = S(\theta_1) \cup \cdots \cup S(\theta_n)$ be any representation of A as a direct join decomposition in the lattice \mathfrak{L}_A . Then A is isomorphic to $S(\theta_1) \times \cdots \times S(\theta_n)$ if A has the condition (*): $S(\theta) = e$ implies $\theta = 0$.

Proof. There exist lower-congruences θ'_i such that $S(\theta'_i) = S(\theta_i)$. **Putting** θ'_i in place of θ_i , we get by the assumption $(S(\theta'_1) \cup \cdots \cup S(\theta'_{i-1})) \cap S(\theta'_i) = e$. Hence $S(\theta'_1 \cup \cdots \cup \theta'_{i-1}) \cap S(\theta'_i) = e$, $S((\theta'_1 \cup \cdots \cup \theta'_{i-1}) \cap \theta'_i) = e$. Using the condition (*), we get $(\theta'_1 \cup \cdots \cup \theta'_i)$ $\cup \theta'_{i-1}) \cap \theta'_i = 0$. Hence by Theorems 4 and 8, we get $S(\theta'_1 \cup \cdots \cup \theta'_i)$ $\cong S(\theta'_1 \cup \cdots \cup \theta'_{i-1}) \times S(\theta'_i)$. Therefore $A \cong S(\theta_1) \times \cdots \times S(\theta_n)$.

Theorem 10. Let $A \cong A_1 \times \cdots \times A_n$ be any representation of A as a direct product. If A has not an infinite normal chain, then there exist lower-congruences $\theta_1, \ldots, \theta_n$ such that $S(\theta_i) \cong A_i$ and $A = S(\theta_1) \cup \cdots \cup S(\theta_n)$ is a direct join decomposition in the lattice \mathfrak{L}_A .

Proof. We denote by $A \ni a \sim (a_1, \ldots, a_n) \in A_1 \times \cdots \times A_n$ the correspondence of the isomorphism of A and $A_1 \times \cdots \times A_n$. We define $(a_1, \ldots, a_n) \sim a \stackrel{\theta'_i}{=\!=} b \sim (b_1, \ldots, b_n)$ when $a_k = b_k$ for $k \neq i$. Then θ'_i is a congruence on A such that $S(\theta'_i) \cong A_i$. Let $\theta_1, \ldots, \theta_n$ be lower-congruences such that $S(\theta_i) = S(\theta'_i)$, then $A \cong S(\theta_1) \times \cdots \times S(\theta_n)$. Since $\theta'_1, \ldots, \theta'_n$ are independent, $\theta_1, \ldots, \theta_n$ are independent. Hence by Theorems 4 and 8, $S(\theta_1 \circ \cdots \circ \theta_i) \cong S(\theta_1 \circ \cdots \circ \theta_{i-1}) \times S(\theta_i)$. Therefore $S(\theta_1 \circ \cdots \circ \theta_n) \cong S(\theta_1) \times \cdots \times S(\theta_n) \cong A$. If $S(\theta_1 \circ \cdots \circ \theta_n) \cong A$, then there exists an infinite normal chain of A. This contradicts the assumption of this theorem. Hence $A = S(\theta_1 \circ \cdots \circ \theta_n) = S(\theta_1) \circ \cdots \circ S(\theta_n) = S(\theta_1) \circ \cdots \circ S(\theta_n)$ is a direct join decomposition in the lattice \mathfrak{L}_A .

Theorem 11. (Remak-Schmidt-Ore theorem for direct join decompositions) Let $A=S(\theta_1) \cup \cdots \cup S(\theta_n)=S(\varphi_1) \cup \cdots \cup S(\varphi_m)$ be any two representations as a direct join decomposition of indecomposable factors in the lattice \mathfrak{L}_A . If (i) A has the condition (*), (ii) \mathfrak{L}_A has finite length, then n=m, and $S(\theta_i)$, $S(\varphi_j)$ are pairwise isomorphic, moreover $S(\theta_i)$ and $S(\varphi_j)$ are mutually replaceable.

Proof. By the modularity of \mathfrak{L}_A , we get that n=m, and $S(\theta_i)$, $S(\varphi_j)$ are pairwise projective, moreover $S(\theta_i)$ and $S(\varphi_i)$ are mutually replaceable. Assuming that $\theta_1, \ldots, \theta_n, \varphi_1, \ldots, \varphi_m$ are lower-congruences without loss of generality, we get that $\theta_i^* = \theta_1 \cup \cdots \cup \theta_{i-1}$ $\cup \theta_{i+1} \cup \cdots \cup \theta_n$ is a lower-congruence. Hence $A/\theta_i^* = (S(\theta_i)|\theta_i^*)/\theta_i^* \cong S(\theta_i)$ $|\theta_i^* = S(\theta_i)/\theta_i \cup \theta_i^* = S(\theta_i)$. Similarly $A/\theta_i^* = (S(\varphi_j)|\theta_i^*)/\theta_i^* \cong S(\varphi_i)/\theta_i^* = S(\varphi_j)/\varphi_j \cap \theta_i^* = S(\varphi_j)$. **Theorem 12.** (Remak-Schmidt-Ore theorem for direct product decompositions) Let $A \cong A_1 \times \cdots \times A_n \cong B_1 \times \cdots \times B_m$ be any two representations as a direct product of indecomposable factors. If (i) A has the condition (*), (ii) A has no infinite normal chain, then n=m, and A_i , B_j are pairwise isomorphic.

Proof. This theorem is immediate by Theorems 9,10 and 11.

References

1) G. Birkhoff: Lattice Theory, Amer. Math. Soc. Coll. Pub., 25 (2nd ed.) (1948).

2) K. Shoda: Ueber die allgemeinen algebraischen Systeme I-VIII, Proc. Imp. Acad., **17–20** (1941–1944).

3) K. Shoda: The general theory of algebras (in Jap.) (1947).

4) K. Shoda: Allgemeine Algebra, Osaka Math. Jour., 1 (1949).