15. On the Structure of Algebraic Systems

By Tsuyoshi Fujiwara
Department of Mathematics, Yamaguchi University
(Comm. by K. Shoda, m.J.A., Feb. 12, 1954)

The structure of an algebraic system A has been discussed by K. Shoda ${ }^{2)^{5(4)}}$ under the following conditions:

SI. A has a null-element.
SII. The subsystem generated by any two normal subsystems of A is normal in A.

SIII. The meromorphism of any two algebraic systems which are homomorphic to A is always class-meromorphism.
(SII and SIII are assumed for any subsystem of A.)
G. Birkhoff has introduced in his book ${ }^{11}$ the following condition which is equivalent to SIII: all congruences on A are permutable.

In the present paper we shall give a new definition of normal subsystems, and study on the normal subsystems and the congruences of an algebraic system A (§1). Moreover under weaker conditions than SII, SIII (§2), we shall discuss the Jordan-Hollder-Schreier theorem (§3) and the Remak-Schmidt-Ore theorem for A (§4).
§1. Normal Subsystems and Congruences. Throughout this paper we put the following conditions on the algebraic system A to keep out the complication.
0. All compositions are binary and single valued, moreover any two elements may be composable by any composition.
I. A has a null-element e (eae=e for any composition α).

A subset B of A is called a subsystem if B is closed under any composition of A and contains e.

Let $f\left(\xi_{1}, \ldots, \xi_{n}\right)$ be a polynomial by compositions of A. In the following $f\left(X, x_{2}, \ldots, x_{n}\right)$ denotes the set $\left\{f\left(x, x_{2}, \ldots, x_{n}\right): x \in X\right\}$, where $X \subset A, x_{2}, \ldots, x_{n} \in A$. Then $f\left(X, x_{2}, \ldots, x_{n}\right)$ is of course a subset of A.

Definition 1. A subset C is called a coset if and only if the following condition holds for any polynomial $f\left(\xi_{1}, \ldots, \xi_{n}\right)$ and any elements $x_{2}, \ldots, x_{n} \in A$,

$$
f\left(C, x_{2}, \ldots, x_{n}\right) \frown C \neq \phi \quad \text { implies } \quad f\left(C, x_{2}, \ldots, x_{n}\right) \subset C .
$$

A coset C is called a normal subsystem, when C forms a subsystem of A.

Theorem 1. Any coset C is a residue class of a congruence and conversely.

Proof. We define $a \stackrel{\otimes}{\sim} b(a, b \in A)$ when there exist polynomials f_{1}, \ldots, f_{n} such that

$$
\begin{gathered}
a \in f_{1}\left(C, x_{1,2}, \ldots, x_{1, r_{2}}\right), \\
f_{1}\left(C, x_{1,2}, \ldots, x_{1, r_{1}}\right) \frown f_{2}\left(C, x_{2,2}, \ldots, x_{2, r_{2}}\right) \neq \phi, \\
\left.\ldots \ldots \ldots, \ldots \ldots, x_{n, r_{n}}\right) \neq \phi, \\
f_{n-1}\left(C, x_{n-1,2}, \ldots, x_{n-1, r_{n-1}}\right) \frown f_{n}\left(C, x_{n, 2}, \ldots, x_{n, 2}, \ldots, x_{n, r_{n}}\right) \ni b .
\end{gathered}
$$

It is easily verified that the relation θ is a congruence on A. Since $C \subset f(C)$ for the polynomial $f(\xi)=\xi, C$ is contained in a class C^{\prime} corresponding to the congruence θ. Then $C=C^{\prime}$ follows from the definitions of θ and the coset. Therefore θ is a congruence having a giving coset C as a class. The converse follows from the property of the congruence.

Remark. In order that any two elements of C are to be congruent by a congruence φ, it is necessary that φ has the property of θ. Hence the congruence θ is the least one corresponding to the coset C.
K. Shoda and G. Birkhoff have defined normal subsystems as follows: The residue class of A with respect to a congruence which contains e is called a normal subsystem of A. This definition is evidently equivalent to our definition.

In the following θ_{L} denotes the congruence of a subsystem L, $\theta_{L}(B)$ the congruence naturally induced by θ_{L} on $B \subset L . \quad B / \theta_{L}$ denotes the residue class system of B with respect to $\theta_{L}(B)$. For a subset $M \subset B$, we denote by $\left(M \mid \theta_{L}(B)\right)$ the set $\left\{x: x \stackrel{\theta^{\theta_{L}(B)}}{=} m \in M\right\}$. If M is a subsystem of B, then the set $\left(M \mid \theta_{L}(B)\right)$ forms clearly a subsystem of B.

Theorem 2. Let C be any subsystem such that $\left(B \mid \theta_{L}\right) \supset C \supset B$. Then C / θ_{L} and B / θ_{L} are isomorphic.

Proof. Let $\left\{C_{i}\right\}$ be the set of all cosets of C corresponding to $\theta_{L}(C)$, and let $B_{i}=C_{i} \cap B$, then $\left\{B_{i}\right\}$ is the set of all the cosets of B corresponding to $\theta_{L}(B)$. And the correspondence $C_{i} \leftrightarrow B_{i}$ is evidently an isomorphism of C / θ_{L} and B / θ_{L}.

Theorem 3. Let $L \supset B \supset C, M \supset C$, and $\theta_{L}(C) \leqq \phi_{M}(C)$. Then the congruence $\varphi_{M}(C)$ can be extended on the subsystem $\left(C \mid \theta_{L}(B)\right)$.

Proof. Let $a, b \in\left(C \mid \theta_{L}(B)\right)$. We define $a \sim b$ if and only if there exist $x_{1}, x_{2} \in C$ such that $a \stackrel{\theta_{1}(B)}{=} x_{1} \stackrel{\varphi_{M}(C)}{=} x_{2} \stackrel{\theta_{1}(B)}{=} b$. Then it is easily verified that the relation \sim is a congruence on $\left(C \mid \theta_{L}(B)\right)$. And by $\theta_{L}(C)$ $\leqq \varphi_{M}(C)$ the congruence \sim is equivalent to $\varphi_{M}(C)$ on C.

In the following we denote by $\left[\varphi_{M}(C) \mid \theta_{L}(B)\right]$ the extended congruence of $\varphi_{m}(C)$ as in Theorem 3.

Definition 2. Let N be a normal subsystem of A. The congruence
θ is called a lower-congruence if θ is a least congruence corresponding to N.

The lower-congruence corresponding to N may be constructed as in the proof of Theorem 1. Hence we can easily prove the following:

Theorem 4. The join of any two lower-congruences is a lowercongruence.
§2. Conditions for Algebraic Systems. In order to extend our theory, we discuss some conditions for the algebraic system A.

Let $\theta(B)$ be a congruence on a subsystem B. We denote by $S_{x}(\theta(B))$ the coset containing $x \in B$ which corresponds to $\theta(B)$, and for convenience, by $S\left(\theta(B)\right.$) the normal subsystem $S_{e}(\theta(B))$.

We consider the following conditions:
II. $(S(\theta) \mid \varphi)=(S(\varphi) \mid \theta)$ for any lower-congruences θ, φ on A.

II*. $\quad\left(S\left(\theta_{L}(L \frown M)\right) \mid \varphi_{M}(L \frown M)\right)=\left(S\left(\varphi_{M}(L \frown M)\right) \mid \theta_{L}(L \frown M)\right)$ for any lower-congruences θ_{L} and φ_{M} on L and M respectively, where L, M are any subsystems which appear in normal chains of A.
III. $\quad(S(\theta) \mid \varphi)=\left(S_{x}(\varphi) \mid \theta\right)$ for an element x satisfying $S(\theta) \frown S_{x x}(\varphi) \neq \phi$, where θ and φ are lower-congruences on A.

Using our notations we can describe the condition SIII as follows:

$$
\left(S_{x}(\theta) \mid \varphi\right)=\left(S_{y}(\varphi) \mid \theta\right) \text { for } x, y \text { satisfying } S_{x}(\theta) \frown S_{y}(\varphi) \neq \phi .
$$

Then the condition SIII* that any subsystem B of A satisfies the condition SIII can be described as follows:

$$
\begin{aligned}
& \left(S_{x}(\theta(B)) \mid \varphi(B)\right)=\left(S_{y}(\varphi(B)) \mid \theta(B)\right) \text { for } x, y \text { satisfying } \\
& S_{x}(\theta(B)) \cap S_{y}(\varphi(B)) \neq \phi .
\end{aligned}
$$

By the above descriptions of the conditions we can easily see the following implications:

$$
\text { SIII } \rightarrow \text { SIII } \rightarrow \mathrm{III} \rightarrow \mathrm{II} \text { and } \mathrm{SIII}^{*} \rightarrow \mathrm{II}^{*} \rightarrow \mathrm{II} .
$$

We now prove the
Theorem 5. The condition SII implies II.
Proof. Let θ, φ be any lower-congruences on A. Let ω be the lower-congruence corresponding to the subsystem B generated by $S(\theta)$ and $S(\varphi)$. Since the subsystem $(S(\theta) \mid \varphi)$ contains $S(\theta)$ and $S(\varphi)$, $S(\omega)=B \subset(S(\theta) \mid \varphi)$. On the other hand, $S(\omega) \supset S(\varphi)$ implies $\omega \geqq \varphi$, and therefore $S(\omega) \supset(S(\theta) \mid \varphi)$. Hence $S(\omega)=(S(\theta) \mid \varphi)$. Similarly $S(\omega)=$ $(S(\varphi) \mid \theta)$. Therefore we get $(S(\theta) \mid \varphi)=(S(\varphi) \mid \theta)$.

Theorem 6. If A has the condition II, then the set \mathfrak{I}_{A} of all the normal subsystems of A forms a modular lattice under meet, the intersection and join $S(\theta) \smile S(\varphi)=(S(\theta) \mid \varphi)$ where θ, φ are lower-congruences on A.

Proof. Let θ, φ be lower-congruences. Then $S(\theta) \cup S(\varphi)=S(\theta \smile \varphi)$, since $S(\theta) \cup S(\varphi)=(S(\theta) \mid \varphi)=(S(\varphi) \mid \theta)$. By the definition we have $S(\theta)$ $\cap S(\varphi)=S(\theta \cap \varphi) . \quad \theta \cap \varphi$ is not always a lower-congruence, we denote by $\overline{\theta \cap \varphi}$ the lower-congruence corresponding to $S(\theta \cap \varphi)$. Then
$(S(\theta) \frown S(\varphi)) \smile S(\theta)=S(\theta \cap \varphi) \cup S(\theta)=S \overline{(\theta \cap \varphi)} \smile S(\theta)=S(\overline{(\theta \cap \varphi)} \smile \theta)=S(\theta)$. Since $\theta \smile \varphi$ is a lower-congruence, $(S(\theta) \smile S(\varphi)) \frown S(\theta)=S(\theta \smile \varphi) \frown S(\theta)$ $=S((\theta \cup \varphi) \frown \theta)=S(\theta)$. Hence \mathfrak{Z}_{A} forms a lattice.

Let θ, φ_{i} be lower-congruences. Let $S\left(\varphi_{1}\right) \varsubsetneqq S\left(\varphi_{\mathbf{z}}\right)$ and $S\left(\varphi_{1}\right) \cup$ $S(\theta)=S\left(\varphi_{2}\right) \smile S(\theta)$. From $S\left(\varphi_{1}\right) \nsubseteq S\left(\varphi_{2}\right)$ we get $\varphi_{1}<\varphi_{2}$. Then $\left(S(\theta) \mid \varphi_{1}\right) /$ $\varphi_{1}=S\left(\varphi_{1}\right) \cup S(\theta) / \varphi_{1}=S\left(\varphi_{2}\right) \cup S(\theta) / \varphi_{1} \supset S\left(\varphi_{2}\right) / \varphi_{1}$. Hence $S\left(\varphi_{2}\right) / \varphi_{1}$ contains at least one coset different from $S\left(\varphi_{1}\right)$. Hence $S\left(\varphi_{1}\right) \frown S(\theta) \varsubsetneqq S\left(\varphi_{2}\right) \frown$ $S(\theta)$. Therefore \mathfrak{R}_{A} is modular.
§3. Normal Chains. We denote by $B / / N$ the residue class system of $B(\subset A)$ with respect to the greatest congruence corresponding to a normal subsystem N of B.

Theorem 7. (Schreier theorem for normal chains) If A has the condition $\mathrm{II*}^{*}$, then any two finite normal chains

$$
\begin{equation*}
A=A_{0} \supset S\left(\theta_{0}\left(A_{0}\right)\right)=A_{1} \supset \cdots \supset S\left(\theta_{n-1}\left(A_{n-1}\right)\right)=A_{n}=e, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A=B_{0} \supset S\left(\varphi_{0}\left(B_{0}\right)\right)=B_{1} \supset \cdots \supset S\left(\varphi_{m-1}\left(B_{m-1}\right)\right)=B_{m}=e \tag{2}
\end{equation*}
$$

can be refined by interpolation of terms $A_{i, j}=\left(A_{i} \cap B_{j} \mid \theta_{i}\left(A_{i}\right)\right)$ and $B_{i, j}$ $=\left(A_{i} \cap B_{j} \mid \varphi_{j}\left(B_{j}\right)\right)$ such that $A_{i, j} / / A_{i, j+1}$ and $B_{i, j} / / B_{i+1, j}$ are isomorphic, where $\theta_{i}\left(A_{i}\right), \varphi_{j}\left(B_{j}\right)$ are lower-congruences on A_{i}, B_{j} respectively.

Proof. Let $\omega\left(A_{\imath} \cap B_{\jmath}\right)=\theta_{i}\left(A_{i} \frown B_{j}\right) \varphi_{i}\left(A_{\imath} \frown B_{j}\right)$. Then $\left[\omega\left(A_{\imath} \frown B_{j}\right) \mid\right.$ $\left.\theta_{i}\left(A_{i}\right)\right]$ is just defined on $\left(A_{i} \cap B_{j} \mid \theta_{i}\left(A_{\imath}\right)\right)$. And we get

$$
\begin{aligned}
& S\left(\left[\omega\left(A_{i} \cap B_{j}\right) \mid \theta_{i}\left(A_{i}\right)\right]\right)=\left(S\left(\omega\left(A_{i} \frown B_{j}\right)\right) \mid \theta_{i}\left(A_{i}\right)\right) \\
= & \left(S\left(\theta_{\imath}\left(A_{i} \cap B_{j}\right) \cup \varphi_{j}\left(A_{i} \frown B_{j}\right)\right) \mid \theta_{i}\left(A_{i}\right)\right)=\left(\left(S\left(\varphi_{j}\left(A_{i} \cap B_{j}\right)\right) \mid \theta_{i}\left(A_{\imath} \frown B_{j}\right)\right) \mid \theta_{i}\left(A_{i}\right)\right) \\
= & \left(S\left(\varphi_{j}\left(A_{\imath} \cap B_{j}\right) \mid \theta_{i}\left(A_{i}\right)\right)=\left(A_{\imath} \cap S\left(\varphi_{j}\left(B_{j}\right)\right) \mid \theta_{i}\left(A_{i}\right)\right)\right. \\
= & \left(A_{\imath} \cap B_{j_{+1}} \mid \theta_{i}\left(A_{i}\right)\right)=A_{i, j+1} .
\end{aligned}
$$

Hence (1) is refined by interpolation of terms $A_{i, j}$. Similarly (2) is refined by interpolation of terms $B_{\imath, j}$.

Since $\left(A_{i} \frown B_{j} \mid\left[\omega\left(A_{i} \cap B_{j}\right) \mid \theta_{i}\left(A_{i}\right)\right]\right)=\left(A_{\imath} \cap B_{j} \mid \theta_{i}\left(A_{i}\right)\right)$, we get

$$
\left(A_{\imath} \cap B_{J} \mid \theta_{i}\left(A_{\imath}\right)\right) /\left[\omega\left(A_{\imath} \cap B_{j}\right) \mid \theta_{i}\left(A_{i}\right)\right]
$$

$$
\cong A_{i} \frown B_{j} /\left[\omega\left(A_{i} \frown B_{j}\right) \mid \theta_{i}\left(A_{i}\right)\right]=A_{\imath} \frown B_{j} / \omega\left(A_{i} \frown B_{j}\right) .
$$

Similarly $\left(A_{\imath} \frown B_{J} \mid \varphi_{\jmath}\left(B_{j}\right)\right) /\left[\omega\left(A_{\imath} \frown B_{\jmath}\right) \mid \varphi_{\jmath}\left(B_{j}\right)\right] \cong A_{\imath} \frown B_{J} / \omega\left(A_{\imath} \frown B_{j}\right)$. Hence $A_{i, j} /\left[\omega\left(A_{\imath} \cap B_{j}\right) \mid \theta_{i}\left(A_{\imath}\right)\right] \cong B_{\imath, j} /\left[\omega\left(A_{\imath} \frown B_{j}\right) \mid \varphi_{j}\left(B_{j}\right)\right]$. Therefore $A_{\imath, j} / / A_{\imath, j+1} \cong$ $B_{i, j} / / B_{i+1, j}$.

Remark. The Schreier theorem for normal chains consisting of normal subsystems follows from the modularity of the lattice \mathcal{R}_{A}.
§4. Direct Decompositions. In the following we assume that A has not only the conditions 0 and I but also III.

Theorem 8. Let θ, φ be any lower-congruences on A such that $\theta \cap \varphi=0$, then $S(\theta \smile \varphi)$ and $S(\theta) \times S(\varphi)$ are isomorphic.

Proof. For any element x in $S(\theta \smile \varphi)$, we denote by $S_{x}(\theta)$ the coset of $S(\theta \smile \varphi) / \theta$ containing x, and by $S_{x}(\varphi)$ the coset of $S(\theta \smile \varphi) / \varphi$ containing x. Then the correspondence $x \rightarrow\left(S_{x}(\varphi), S_{x}(\theta)\right)$ is a homomorphism of $S(\theta \smile \varphi)$ onto a subsystem B of $S(\theta \smile \varphi) / \varphi \times S(\theta \smile \varphi) / \theta$. Since $\theta \cap \varphi=0$, the homomorphism is an isomorphism. By the condi-
tion III, we get $S_{x}(\varphi) \frown S_{y}(\theta) \neq \phi$ for any x, y in $S(\theta \smile \varphi)$. Hence $B=$ $S(\theta \smile \varphi) / \varphi \times S(\theta \smile \varphi) / \theta$. Using $\theta \frown \varphi=0$, we get easily

$$
S(\theta \smile \varphi) / \varphi=(S(\theta) \mid \varphi) / \varphi \cong S(\theta) / \theta \cap \varphi=S(\theta) .
$$

Similarly $S(\theta \smile \varphi) / \theta \cong S(\varphi)$. Hence $S(\theta \smile \varphi)$ and $S(\theta) \times S(\varphi)$ are isomorphic.

Theorem 9. Let $A=S\left(\theta_{1}\right) \smile \cdots \smile S\left(\theta_{n}\right)$ be any representation of A as a direct join decomposition in the lattice \mathfrak{B}_{A}. Then A is isomorphic to $S\left(\theta_{1}\right) \times \cdots \times S\left(\theta_{n}\right)$ if A has the condition $(*): \quad S(\theta)=e$ implies $\theta=0$.

Proof. There exist lower-congruences θ_{i}^{\prime} such that $S\left(\theta_{i}^{\prime}\right)=S\left(\theta_{i}\right)$. Putting θ_{i}^{\prime} in place of θ_{t}, we get by the assumption
$\left(S\left(\theta^{\prime}\right) \smile \cdots \smile S\left(\theta_{i-1}^{\prime}\right)\right) \frown S\left(\theta_{i}^{\prime}\right)=e$. Hence $S\left(\theta^{\prime}{ }_{1} \smile \cdots \smile \theta_{i-1}^{\prime}\right) \frown S\left(\theta_{i}^{\prime}\right)=e$, $S\left(\left(\theta_{1}^{\prime} \smile \cdots \smile \theta_{i-1}^{\prime}\right) \frown \theta_{i}^{\prime}\right)=e$. Using the condition (*), we get $\left(\theta_{1}^{\prime} \smile \cdots\right.$ $\left.\smile \theta_{i-1}^{\prime}\right) \frown \theta_{i}^{\prime}=0$. Hence by Theorems 4 and 8 , we get $S\left(\theta^{\prime}{ }_{1} \smile \cdots \smile \theta_{i}^{\prime}\right)$ $\cong S\left(\theta_{1}^{\prime} \smile \cdots \smile \theta_{i-1}^{\prime}\right) \times S\left(\theta_{i}^{\prime}\right)$. Therefore $A \cong S\left(\theta_{1}\right) \times \cdots \times S\left(\theta_{n}\right)$.

Theorem 10. Let $A \cong A_{1} \times \cdots \times A_{n}$ be any representation of A as a direct product. If A has not an infinite normal chain, then there exist lower-congruences $\theta_{1}, \ldots, \theta_{n}$ such that $S\left(\theta_{i}\right) \cong A_{i}$ and $A=S\left(\theta_{1}\right) \smile \cdots \smile S\left(\theta_{n}\right)$ is a direct join decomposition in the lattice \mathfrak{R}_{A}.

Proof. We denote by $A \ni a \sim\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \cdots \times A_{n}$ the correspondence of the isomorphism of A and $A_{1} \times \cdots \times A_{n}$. We define $\left(a_{1}, \ldots, a_{n}\right) \sim a \stackrel{\theta^{\prime} \varepsilon}{=} b \sim\left(b_{1}, \ldots, b_{n}\right)$ when $a_{k}=b_{k}$ for $k \neq i$. Then θ_{i}^{\prime} is a congruence on A such that $S\left(\theta_{i}^{\prime}\right) \cong A_{i}$. Let $\theta_{1}, \ldots, \theta_{n}$ be lowercongruences such that $S\left(\theta_{i}\right)=S\left(\theta_{i}^{\prime}\right)$, then $A \cong S\left(\theta_{1}\right) \times \cdots \times S\left(\theta_{n}\right)$. Since $\theta_{1}^{\prime}, \ldots, \theta_{n}^{\prime}$ are independent, $\theta_{1}, \ldots, \theta_{n}$ are independent. Hence by Theorems 4 and $8, S\left(\theta_{1} \smile \cdots \smile \theta_{i}\right) \cong S\left(\theta_{1} \smile \cdots \smile \theta_{i-1}\right) \times S\left(\theta_{i}\right)$. Therefore $S\left(\theta_{1} \smile \cdots \smile \theta_{n}\right) \cong S\left(\theta_{1}\right) \times \cdots \times S\left(\theta_{n}\right) \cong A$. If $S\left(\theta_{1} \smile \cdots \smile \theta_{n}\right) \cong A$, then there exists an infinite normal chain of A. This contradicts the assumption of this theorem. Hence $A=S\left(\theta_{1} \smile \cdots \smile \theta_{n}\right)=S\left(\theta_{1}\right) \smile \cdots$ $\smile S\left(\theta_{n}\right)$. And it is evident that $A=S\left(\theta_{1}\right) \smile \cdots \smile S\left(\theta_{n}\right)$ is a direct join decomposition in the lattice \mathfrak{R}_{A}.

Theorem 11. (Remak-Schmidt-Ore theorem for direct join decompositions) Let $A=S\left(\theta_{1}\right) \smile \cdots \smile S\left(\theta_{n}\right)=S\left(\varphi_{1}\right) \smile \cdots \smile S\left(\varphi_{m}\right)$ be any two representations as a direct join decomposition of indecomposable factors in the lattice $\mathfrak{R}_{\boldsymbol{A}}$. If (i) A has the condition (*), (ii) \mathfrak{R}_{A} has finite length, then $n=m$, and $S\left(\theta_{i}\right), S\left(\varphi_{J}\right)$ are pairwise isomorphic, moreover $S\left(\theta_{i}\right)$ and $S\left(\varphi_{j}\right)$ are mutually replaceable.

Proof. By the modularity of \mathfrak{R}_{A}, we get that $n=m$, and $S\left(\theta_{\tau}\right)$, $S\left(\varphi_{j}\right)$ are pairwise projective, moreover $S\left(\theta_{i}\right)$ and $S\left(\varphi_{i}\right)$ are mutually replaceable. Assuming that $\theta_{1}, \ldots, \theta_{n}, \varphi_{1}, \ldots, \varphi_{m}$ are lowèr-congruences without loss of generality, we get that $\theta_{i}^{*}=\theta_{1} \smile \cdots \smile \theta_{i-1}$ $\smile \theta_{\imath+1} \smile \cdots \smile \theta_{n}$ is a lower-congruence. Hence $A / \theta_{i}^{*}=\left(S\left(\theta_{i}\right) \mid \theta_{i}^{*}\right) / \theta_{i}^{*} \cong S\left(\theta_{i}\right)$ $\mid \theta_{i}^{*}=S\left(\theta_{i}\right) / \theta_{i} \smile \theta_{i}^{*}=S\left(\theta_{i}\right)$. Similarly $A / \theta_{i}^{*}=\left(S\left(\varphi_{j}\right) \mid \theta_{i}^{*}\right)\left|\theta_{i}^{*} \cong S\left(\varphi_{i}\right) / \theta_{i}^{*}=S\left(\varphi_{j}\right)\right|$ $\varphi_{j} \cap \theta_{i}^{*}=S\left(\varphi_{j}\right)$. Therefore $S\left(\theta_{i}\right) \cong S\left(\varphi_{j}\right)$.

Theorem 12. (Remak-Schmidt-Ore theorem for direct product decompositions) Let $A \cong A_{1} \times \cdots \times A_{h} \cong B_{1} \times \cdots \times B_{m}$ be any two representations as a direct product of indecomposable factors. If (i) A has the condition (*), (ii) A has no infinite normal chain, then $n=m$, and A_{i}, B_{J} are pairwise isomorphic.

Proof. This theorem is immediate by Theorems 9,10 and 11.

References

1) G. Birkhoff : Lattice Theory, Amer. Math. Soc. Coll. Pub., 25 (2 nd ed.) (1948).
2) K. Shoda: Ueber die allgemeinen algebraischen Systeme I-VIII, Proc. Imp. Acad., 17-20 (1941-1944).
3) K. Shoda : The general theory of algebras (in Jap.) (1947).
4) K. Shoda: Allgemeine Algebra, Osaka Math. Jour., 1 (1949).
