## 52. Probabilities on Inheritance in Consanguineous Families. VIII

By Yûsaku Komatu and Han Nishimiya<br>Department of Mathematics, Tokyo Institute of Technology<br>(Comm. by T. Furuhata, m.J.a., March 12, 1954)

VIII. Mother-descendants combinations through several consanguineous marriages (Continuation)
3. General mother-descendants combinations through several consanguineous marriages

In the present section we consider the problems which correspond to those discussed in VI, § 3, but we now suppose that there exist two descendants instead of one. The reduced probability in consideration is then defined by
$\kappa_{l\left|(\mu \nu ; n)_{t}\right| \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{l \mid(\mu \nu ; n)_{t}}(\alpha \beta ; a b) \kappa_{\mu \nu}\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \quad\left(\mu \nu=\mu_{t+1} \nu_{t+1}\right)$.
In case $\mu=\nu=1$, we get the following results:

$$
\begin{aligned}
& \kappa_{l \mid\left(\mu \nu ; 1_{t} \mid 11\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4\left(u_{t}+w_{t}\right) \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l+1}\left\{2^{-t} \Lambda_{t} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+\left(v_{t}+2 w_{t}\right) \mathfrak{Y}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\}, \\
& \kappa_{t \mid\left(\mu \nu ; n_{t} \mid 11\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-t-N_{t}+1} \Lambda_{t} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
\end{aligned}
$$

In case $\mu=1<\nu$ we get the following results:

$$
\begin{aligned}
& \kappa_{l\left|(\mu \nu ; 1)_{t}\right| 1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{1 \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\nu+1}\left(u_{t}+w_{t}\right) \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-t} \Lambda_{t}\left\{\bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu+1} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \\
& \quad+2^{-l-\nu}\left(v_{t}+2 w_{t}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
& \kappa_{l\left|(\mu \nu ; \nu)_{t}\right| 1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{\left.2 \eta_{2}\right)}\right)=\sigma_{1 v}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-N_{t}} \Lambda_{t}\left\{\bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu+1} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \quad \text { for } n_{t}>1 .
\end{aligned}
$$

In case $\mu, \nu>1$, we get the following results:

$$
\begin{aligned}
& \kappa_{l \mid(\mu \nu ; 1)_{t}(\mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\lambda+1}\left(u_{t}+w_{t}\right) \bar{A}_{\xi_{1} \eta_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) \\
& +2^{-l-t+1} \Lambda_{t}\left\{2^{-\mu} \bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)\right\} \\
& \quad+2^{-l-\lambda}\left(2^{-t+1} \Lambda_{t}+v_{t}+2 w_{t}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
& \kappa_{l(\mu \nu ; n)_{t} \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2 \eta_{2}}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-N_{t}+1} \Lambda_{t}\left\{2^{-\mu} \bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu} \bar{A}_{\xi_{1} \eta_{11}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)\right. \\
& \left.\quad+2^{-\lambda} S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \text { for } n_{t}>1 .
\end{aligned}
$$

More generally, we obtain the following results:

$$
\begin{aligned}
& \kappa_{l \mid(\mu \nu ; n)_{t}\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}, 11}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4\left(u_{t^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-N_{6}+1} \Lambda_{t}\left\{2^{-t^{\prime}} \Lambda_{t^{\prime}}^{\prime} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+\left(v_{t^{\prime}}^{\prime}+2 w_{t^{\prime}}^{\prime}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\}, \\
& \kappa_{l(\mu \nu ; n)_{t}\left(\left\langle\mu^{\prime} \nu^{\prime} ;\right)_{t^{\prime}} \mid 1 \nu^{\prime}\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{\left.2 \eta_{2}\right)}\right. \\
& \quad=\sigma_{1 \nu^{\prime}}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\nu^{\prime}+1}\left(u_{t^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2^{-l-N-t^{\prime}} \Lambda_{t} \Lambda_{t^{\prime}}^{\prime}\left\{\bar{A}_{\xi_{2} \eta_{1}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu^{\prime}+1} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \\
& +2^{-l-N_{t^{\prime}} \nu} \Lambda_{t}\left(v_{t^{\prime}}^{\prime}+2 w_{t^{\prime}}^{\prime}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
& \kappa_{b \mid\left(\mu \nu ; \eta_{t}\left|\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}\right| \mu^{\prime} \nu \nu^{\prime}\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& =\sigma_{\mu^{\prime} \nu^{\prime}}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\lambda^{\prime}+1}\left(u_{t^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) \\
& +2^{-l-N_{t}-t^{\prime}+1} \Lambda_{t} \Lambda_{t^{\prime}}^{\prime}\left\{\overline{2}^{-\mu^{\prime}} A_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+\overline{2}^{-\nu^{\prime}} A_{\xi_{1} \eta_{1}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)\right\} \\
& +2^{-l-N_{t^{-\lambda^{\prime}}}} \Lambda_{t}\left(2^{-t^{\prime}+1} \Lambda_{t^{\prime}}^{\prime}+v_{t^{\prime}}^{\prime}+2 w_{t^{\prime}}^{\prime}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
\end{aligned}
$$

$n_{t}, \mu^{\prime}=\mu_{t^{\prime}+1}^{\prime}$ and $\nu^{\prime}=\nu_{t^{\prime}+1}^{\prime}$ being supposed to be greater than unity.
It would be noticed that the above formulas except those with $n_{t}=1$ remain valid even for $l=0$.

## 4. Descendants combinations after consanguineous marriages

For any mother-descendants combination $\left(A_{\alpha \beta} ; A_{\xi_{1} \eta_{1}}, A_{\xi_{2_{2} \eta_{2}}}\right) \ldots$, if we eliminate mother's type by summing up the probability $\pi .$. $\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \bar{A}_{\alpha \beta} \kappa \ldots\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ over all the possible genotypes of mother, then we obtain the probability of a pair of descendants $\left(A_{\xi_{1} \eta_{1}}, A_{\xi_{5} \eta_{3}}\right)$ of assigned consanguineous relationship, which will be designated by

$$
\begin{aligned}
\sigma \ldots\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\sum \pi \ldots\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \equiv \sum \bar{A}_{\alpha \beta} \kappa \ldots\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
\end{aligned}
$$

In case of a simple mother-descendants combination, $\kappa_{\mu \nu}$, it is given by

$$
\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \bar{A}_{a b} \kappa_{\mu \nu}\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
$$

a case which has been discussed in II, §1.
We now consider the mother-descendants combination of the form $\left(A_{\alpha \beta} ; A_{\xi_{1} \eta_{1}}, A_{\xi_{2} \eta_{2}}\right)_{\left(\mu \nu ; 1 \nu_{t} \mid \mu \nu\right.}$. The probability of the corresponding descendants combination is then given by

$$
\begin{aligned}
& \boldsymbol{\sigma}_{(\mu \nu ; 1)_{t} 11}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4\left(u_{t}+w_{t}\right) \mathfrak{x}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
& \boldsymbol{\sigma}_{\left(\mu \nu ; 11_{t} \mid \mu \nu\right.}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\lambda+1}\left(u_{t}+w_{t}\right) \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) \\
& \text { for } \mu+\nu>2 .
\end{aligned}
$$

These results show that the distribution of descendants combination $\left(A_{\xi_{1} \eta_{1}}, A_{\xi_{5} \eta_{2}}\right)_{(\mu \nu ; 1)_{t} \mid \mu \nu}$ deviates, compared with one without any consanguineous marrige, by a residual quantity.

$$
\begin{array}{rll}
\sigma_{(\mu \nu ; 1)_{t} \mid \mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)-\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & \text { for } \mu=\nu=1, \\
& = \begin{cases}4\left(u_{t}+w_{t}\right) \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & \\
\left(u_{t}+w_{t}\right)\left\{\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)-\bar{A}_{\xi_{1} \eta_{1}} \bar{A}_{\xi_{2} \eta_{2}}\right\} & \text { for } \mu+\nu>2,\end{cases}
\end{array}
$$

where we put in conformity with a notation already availed

$$
u_{t}+w_{t}=\sum_{r=0}^{t-1} \prod_{s=r+1}^{t} 2^{-\lambda_{s}-2}
$$

Whether the deviation occurs in the direction of increase or decrease depends on the sign of values of the factor of $u_{t}+w_{t}$, namely, the sign of values of $\mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ for $\mu=\nu=1$ or of $Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right)$ for $\mu+\nu>2$, respectively.

In case of a mother-descendants combination $\left(A_{\alpha \beta} ; A_{5_{1} \eta_{1}}, A_{5_{5_{2} \eta_{2}}}\right)_{\left(\mu \nu ; n \eta_{t} \mid \mu \nu\right.}$ with $n_{t}>1$, we get

$$
\sigma_{(\mu \nu ; n)_{t} \mid \mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

regardless of the values of $\mu$ and $\nu$ provided $n_{t}>1$, showing that the deviation vanishes out.

In case of a general mother-descendants combination, a similar argument will lead to the formula

$$
\begin{aligned}
& \sigma_{l\left|(\mu \nu ; n)_{t}\right|\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}} \mid \mu^{\prime} \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
= & \left\{\begin{array}{cl}
\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4\left(u_{\iota^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & \text { for } \mu^{\prime}=\nu^{\prime}=1, \\
\sigma_{\mu^{\prime} \nu^{\prime}}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\lambda^{\prime}+1}\left(u_{t^{\prime}}^{\prime}+w_{l^{\prime}}^{\prime}\right) \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) & \text { for } \lambda^{\prime} \equiv \mu^{\prime}+\nu^{\prime}-1>1,
\end{array}\right.
\end{aligned}
$$ $n_{t}$ being supposed to be greater than unity; the formula remains valid even when $l=0$.

5. Interrelations and asymptotic behaviors of the probabilities

The asymptotic behaviors of the probabilities as one of the generation-numbers tends to infinity can be readily deduced from respective expressions derived above, and will yield several interrelations between the probabilities.

We first observe the behaviors of $\kappa_{b \mid\left(\mu \nu ; n \nu_{t} \mid \mu, \nu\right.}$ as each of $\mu_{r}, \nu_{r}$ and $n_{r}$ tends to infinity. We obtain the following limit equations:
$\lim _{\mu \rightarrow \infty} \kappa_{l\left|(\mu \nu ; n)_{t}\right| \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\bar{A}_{\xi_{1} \eta_{1}} \kappa_{l\left|(\mu \nu ; n)_{t-1}\right| \mu_{t} \nu_{t} ; n_{t}+\nu}\left(\alpha \beta ; \xi_{2} \eta_{2}\right)$,
$\lim _{\mu_{z} \rightarrow \infty} \kappa_{l\left|(\mu \nu ; \infty)_{t}\right| \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\kappa_{l\left|(\mu \nu ; n)_{z-2}\right| \mu_{z-1}+\nu_{z}+n_{z}\left|\left(\mu^{\prime} \nu^{\prime} ; n^{\prime}\right)_{t-z}\right| \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$ for $1 \leqq z$ with $\mu_{s}^{\prime}=\mu_{z+s}, \nu_{s}^{\prime}=\nu_{z+s}, n_{s}^{\prime}=n_{z+s}(1 \leqq s \leqq t-z)$, and

$$
\lim _{l \rightarrow \infty} \kappa_{l \mid\left(\mu \nu ; n_{t} \mid \mu \nu\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\left(\mu \nu ; \boldsymbol{n}_{t} \mid \mu \nu\right.}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) ;
$$

here the generation-numbers except one tending to infinity may be quite arbitrary and, in particular, $l$ may be equal to zero, a case which will be easily comprehensible.

An asymptotic behavior of a probability $\kappa_{l \mid\left(\mu \nu ; n \nu_{t} \mid \mu \nu \nu\right.}$ as $t$ tends to infinity can be deduced similarly as in VI, §5. We obtain more generally the following results:

If there exists a number $\tau$ such that

$$
\lambda_{r}^{\prime}=\lambda_{\infty}^{\prime}(\text { const }) \quad \text { for } r>\tau
$$

then we have

$$
\lim _{t^{\prime} \rightarrow \infty} \kappa_{l\left|(\mu \nu ; n)_{t}\right|\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t} \mid \mu^{\prime} \nu^{\prime}}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
$$

and if

$$
=\left\{\begin{array}{cl}
\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+\frac{4}{2^{\lambda^{\prime} \infty^{+2}-1}} \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & \text { for } \mu^{\prime}=\nu^{\prime}=1, \\
\sigma_{\mu^{\prime} \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+\frac{2^{-\mu^{\prime}-\nu^{\prime}}}{2^{\lambda^{\prime} \infty^{2}}-1} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) & \text { for } \mu^{\prime}+\nu^{\prime}>2,
\end{array}\right.
$$

$$
\lim _{r \rightarrow \infty} \lambda_{r}^{\prime}=\infty
$$

then we have

$$
\lim _{t^{\prime} \rightarrow \infty} \kappa_{l \mid\left(\mu \nu ; \eta_{t}\left|\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}\right| \mu^{\prime} \nu^{\prime}\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu^{\prime} \nu^{\prime}}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) ;
$$

otherwise, the probability under consideration will oscillate, as $t^{\prime} \rightarrow \infty$, within certain upper and lower bounds.

