60. On Closed Mappings

By Sitiro HANAI

Osaka University of the Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., April 12, 1954)

If S and E are T_1 -spaces, a single-valued mapping f(S)=E is said to be closed provided that the image of every closed set in S is closed in E. It is interesting to know how the topology of E is affected by the topology of S under f. Concerning this question, G. T. Whyburn and A. V. Martin have recently investigated and obtained some results.¹⁾

In this note, we will consider the case when the topology of E affected by the topology (under some restrictions) of S under f becomes metrizable.

1. We will firstly prove the following

Theorem 1. Let S be a perfectly separable Hausdorff space and let E a compact space.²⁾ If f(S)=E is a closed mapping such that $f^{-1}(p)$ is compact for every point p of E, then E is a separable metric space.

To establish this theorem, we prove the following lemmas.

Lemma 1. Let S be a perfectly separable Hausdorff space. If f(S)=E is a closed continuous mapping such that $f^{-1}(p)$ is compact for every point p of E, then E is perfectly separable.

Proof. Let $\{U_n\}(n=1, 2, 3, ...)$ be a countable basis of open sets of S. For each finite subset $(n_1, n_2, ..., n_m)$ of (1, 2, 3, ...), let $(\sum_{i=1}^m U_{n_i})_0$ be the union of all $f^{-1}(p)$ such that $\sum_{i=1}^m U_{n_i} \supset f^{-1}(p)$. Then $(\sum_{i=1}^m U_{n_i})_0$ is an open inverse set, and the family $\{(\sum_{i=1}^m U_{n_i})_0\}$ of all such sets is evidently countable.

Now let O be an open set of E and $p \in O$, then $f^{-1}(O) \supset f^{-1}(p)$ and $f^{-1}(O)$ is open in S because f is continuous. Then $f^{-1}(O) = \sum_{j=1}^{\infty} U_{n_j}$ where $\{U_{n_j}\} \subset \{U_n\} (n=1, 2, 3, \ldots)$. Since $f^{-1}(p)$ is compact, there exists a finite subset $\{U_{n_k}\}(k=1, 2, \ldots, l)$ of $\{U_{n_j}\}(j=1, 2, 3, \ldots)$ such that $\sum_{k=1}^{l} U_{n_k} \supset f^{-1}(p)$, hence $(\sum_{k=1}^{l} U_{n_k})_0 \supset f^{-1}(p)$. As f is closed and

¹⁾ G. T. Whyburn: Open and closed mappings, Duke Math. Jour., **17**, 69-74 (1950). A. V. Martin: Decompositions and quasi-compact mappings, (abstract), Bull. Amer. Math. Soc., **59**, 397 (1953).

²⁾ We use "compact" in the sense of "bicompact".

continuous, $f\{(\sum_{k=1}^{i} U_{n_k})_0\}$ is open in *E*. Hence the family of open sets $[f\{(\sum_{i=1}^{m} U_{n_i})_0\}]$ is a countable basis of open sets of *E*. Thus we get the lemma.

Lemma 2. Let S be a Hausdorff space and let E a compact space. If f(S) = E is a closed mapping such that $f^{-1}(p)$ is compact for each point p of E, then f is continuous.

Proof. Suppose on the contrary that f is not continuous. Then there exists a point $a \in S$ at which f is not continuous. Let \mathfrak{F} be the filter of neighborhoods of a and \mathfrak{F}' be the filter whose base is $f(\mathfrak{F})$. Then \mathfrak{F}' does not converge to $f(a) \equiv p$. Hence there exists an open neighborhood V(p) such that $V(p) \in \mathfrak{F}'$. Let Φ' be an ultrafilter which contains \mathfrak{F}' , then $CV(p) \in \Phi'$ where CV(p) denotes the complement of V(p). Since E is compact by assumption, Φ' converges to a point q. Then $p \neq q$ because $CV(p) \in \Phi'$, and hence $a \in f^{-1}(q)$. As $f^{-1}(q)$ is compact and S is a Hausdorff space, there exist open neighborhoods U(a) and $U\{f^{-1}(q)\}$ of a and $f^{-1}(q)$ respectively such that $U(a)U\{f^{-1}(q)\}=\phi$. Then $\overline{U(a)} f^{-1}(q)=\phi$ and hence $q \in f\{\overline{U(a)}\}$.

On the other hand, since $f\{U(a)\} \in \Phi'$ and $\Phi' \rightarrow q$, we have V(q) $f\{U(a)\} \neq \phi$ for every open neighborhood V(q) of q. Hence $q \in \overline{f\{U(a)\}}$. Because f is closed, we have $\overline{f\{U(a)\}} \subset f\{\overline{U(a)}\}$, which contradicts the fact that $q \in f\{\overline{U(a)}\}$.

Proof of Theorem 1. By lemmas 1 and 2, it is evident that E is perfectly separable. To prove that E is metrizable, we have only to prove that E is a Hausdorff space because E is a compact space. Let p and q be any distinct two points of E. Then $f^{-1}(p) f^{-1}(q) = \phi$, and $f^{-1}(p)$ and $f^{-1}(q)$ are compact sets by assumption. Since S is a Hausdorff space, there exist open neighborhoods $U\{f^{-1}(p)\}$ and $U\{f^{-1}(q)\}$ of $f^{-1}(p)$ and $f^{-1}(q)$ respectively such that $U\{f^{-1}(p)\}$ $U\{f^{-1}(q)\} = \phi$.

As f is closed continuous, there exist open inverse sets $U_0\{f^{-1}(p)\}$ and $U_0\{f^{-1}(q)\}$ such that $U\{f^{-1}(p)\}\supset U_0\{f^{-1}(p)\}\supset f^{-1}(p)$ and $U\{f^{-1}(q)\}\supset U_0\{f^{-1}(q)\}\supset f^{-1}(q)$. Hence E is a Hausdorff space.

Remark. Theorem 1 is also proved by use of Lemma 2, Theorem 3 in the following section, and T. Iwamura's theorem.³⁰

2. In this section, we will consider the case when S is a metric space.

We begin with proving the following:

³⁾ T. Iwamura: Remarks on closed mappings and compactness, Natural Science Report of the Ochanomizu Univ., 1, 6-8 (1951).

Theorem 2. If S is a metric space and f(S) = E is a closed continuous mapping, then E is a metric space.

Proof. (1) E satisfies the first countability axiom. In fact, let $O^{(n)}(x)$ (n=1, 2, 3, ...) be open spheres with the center x and the radius $\frac{1}{n}$ for each point x of S. For any point p of E, we have $\sum_{x \in f^{-1}(p)} C^{(n)}(x) \supset f^{-1}(p)$. Since f is closed continuous, in the same way as Lemma 1, we can see that $(\sum_{x \in f^{-1}(p)} C^{(n)}(x))_0$ is an open inverse set. Let $O_0^{(n)}(p) \equiv (\sum_{x \in f^{-1}(p)} C^{(n)}(x))_0$ and let $G^{(n)}(p) \equiv f\{O_0^{(n)}(p)\}$, then $G^{(n)}(p)$ is an open neighborhood of p.

Now we will prove that $\{G^{(n)}(p)\}\ (1, 2, 3, ...)$ is a basis of the neighborhood system of p. Let O(p) be any open neighborhood of p, then $f^{-1}\{O(p)\}$ is open in S because f is continuous. Let d be the distance between $Cf^{-1}\{O(p)\}$ and $f^{-1}(p)$, then $\sum_{x \in f^{-1}(p)} O^{(n)}(x)Cf^{-1}\{O(p)\} = \phi$ for an n such that $\frac{1}{n} < d$. Hence $O_0^{(n)}(p) \subset f^{-1}\{O(p)\}$. Then we have $G^{(n)}(p) \subset O(p)$. Thus E satisfies the first countability axiom. Further it is easy to see that $G^{(1)}(p) \supset G^{(2)}(p) \supset \cdots$ and $\prod G^{(n)}(p) = p$.

(2) For any point p of E and any index n, there exists some index m=m(p, n) such that $G^{(m)}(p)G^{(m)}(q) \neq \phi$ implies $G^{(m)}(q) \subset G^{(n)}(p)$. For, let d' be the distance between $Cf^{-1}\{G^{(n)}(p)\}$ and $f^{-1}(p)$, and let man integer such that $\frac{3}{m} < d'$. If $G^{(m)}(p)G^{(m)}(q) \neq \phi$, then $O_0^{(m)}(p)O_0^{(m)}(q) \neq \phi$. For any point z of $O_0^{(m)}(q)$, there exists $y \in f^{-1}(q)$ such that $z \in O^{(m)}(y)$. Since $O_0^{(m)}(p)$ and $O_0^{(m)}(q)$ are open inverse sets, there exists a point r such that $f^{-1}(r) \subset O_0^{(m)}(p)O_0^{(m)}(q)$. Then there exists a point w of $O^{(m)}(y)f^{-1}(r)$. Hence $w \in O^{(m)}(x)$ for some point x of $f^{-1}(p)$. For this point x, we can easily see that $z \in O^{(n)}(x)$. As $O_0^{(m)}(q) \subset O_0^{(n)}(p)$ follows from that $O_0^{(m)}(q)$ is an inverse open set, we get $G^{(m)}(q) \subset G^{(m)}(q)$.

By (1), (2) and A. H. Frink's theorem,⁴⁾ E is metrizable. This completes the proof of the theorem.

The following theorem due to A. V. $Martin^{50}$ is easily verified by use of Lemma 1 and Theorem 2.

Theorem 3. If S is a separable metric space and f(S)=E is a closed continuous mapping such that $f^{-1}(p)$ is compact for each point p of E, then E is a separable metric space.

By Lemma 2 and Theorem 3, we have also the following:

⁴⁾ A. H. Frink: Distance functions and the metrization problem, Bull. Amer. Math. Soc., **44**, 133-142 (1937).

⁵⁾ A. V. Martin: Loc. cit.

S. HANAI

Corollary. Let S be a separable metric space and let E a compact space. If f(S)=E is a closed mapping such that $f^{-1}(p)$ is compact for each point p of E, then E is a separable metric space.

Theorem 4. If S is a locally compact metric space and f(S) = E is a closed continuous mapping such that $f^{-1}(p)$ is compact for each point p of E, then E is a locally compact metric space.

Proof. By Theorem 2, E is metrizable. Accordingly we need only to prove that E is locally compact. For this purpose, let p be any point of E and let U any open neighborhood of p, then $f^{-1}(U)$ is open in S. For each point x of $f^{-1}(p)$, there exists an open neighborhood O(x) of x such that $f^{-1}(U) \supset \overline{O(x)}$ and $\overline{O(x)}$ is compact because S is a locally compact metric space. Since $f^{-1}(p)$ is compact, there exist open neighborhoods $O(x_i)$ of finite points x_i $(i=1, 2, \ldots, n)$ of $f^{-1}(p)$ respectively such that $f^{-1}(U) \supset \sum_{i=1}^n O(x_i) \supset f^{-1}(p)$ where each $O(x_i)$ satisfies the same condition as the above O(x). Then $f^{-1}(U) \supset$ $\sum_{i=1}^n \overline{O(x_i)} \supset \sum_{i=1}^n O(x_i) \supset f^{-1}(p)$.

Now let $O \equiv (\sum_{i=1}^{n} O(x_i))_0$, then $U \supset f(\overline{O}) \supset f(O) \ni p$ and f(O) is open because f is closed and continuous. As $\sum_{i=1}^{n} \overline{O(x_i)} \supset \overline{O}$ and $\sum_{i=1}^{n} \overline{O(x_i)}$ is compact, \overline{O} is compact. Hence $f(\overline{O}) = \overline{f(O)}$ is compact. This completes the proof of the theorem.