76. Transgression and the Invariant \mathbf{k}_{n}^{q+1}

By Minoru Nakaoka
Osaka City University, Osaka
(Comm. by K. Kunugi, m.J.A., May 13, 1954)

§1. Let X be a topological space with vanishing homotopy groups $\pi_{i}(X)$ for $i \neq n, q(1<n<q)$, and let $x_{0} \in X$ be a base point. For the sake of brevity, we write in the following $\pi_{n}=\pi_{n}(X)$ and $\pi_{q}=\pi_{q}(X)$. We call a space of type ($\left.\pi, r\right)$ any space Y such that $\pi_{i}(Y)=0(i \neq r)$ and $\pi_{r}(Y) \approx \pi$. Then, following Cartan-Serre, ${ }^{1)}$ we have the fiber space (E, p, B) in the sense of Serre ${ }^{2)}$ such that
i) the total space E is of the same homotopy type as X,
ii) the base space B is a space of type $\left(\pi_{n}, n\right)$, and $X \subset B$,
iii) the fiber $F=p^{-1}\left(x_{0}\right)$ is a space of type ($\left.\pi_{q}, q\right)$.

Consider in this fiber space the transgression $\tau: E_{q+1}^{* 0, q} \xrightarrow{d^{q+1}} E_{q+1}^{* q+1,0}$ of the singular cohomology spectral sequence with coefficients in $\pi_{q}{ }^{2)}$ Then, since the singular homology group $H_{i}\left(F ; \pi_{q}\right)=0$ for $i<q$,

$$
\tau=p^{*-1} \circ \delta^{*}: H^{q}\left(F ; \pi_{q}\right) \longrightarrow H^{q+1}\left(B ; \pi_{q}\right),
$$

where $\delta^{*}: H^{q}\left(F ; \pi_{q}\right) \longrightarrow H^{q+1}\left(E, F ; \pi_{q}\right)$ is the coboundary operator, and $p^{*}: H^{q+1}\left(B ; \pi_{q}\right) \longrightarrow H^{q+1}\left(E, F ; \pi_{q}\right)$ is the homomorphism induced by p. Let $\boldsymbol{b}^{q} \in H^{q}\left(F ; \pi_{q}\right)$ be the basic cohomology class, ${ }^{3)}$ and let $\boldsymbol{k}_{n}^{\tau+1} \in H^{q+1}\left(B ; \pi_{q}\right)$ be the geometrical realization of the EilenbergMacLane invariant $\boldsymbol{k}_{n}^{q+1} \in H^{q+1}\left(\pi_{n}, n\right.$; $\left.\pi_{q}\right)$ of the space X. ${ }^{4)}$ Then \boldsymbol{b}^{q} and \boldsymbol{k}_{n}^{7+1} are related by τ as follows:

$$
\begin{equation*}
\tau \boldsymbol{b}^{q}=-\overline{\boldsymbol{k}}_{n}^{q+1} \tag{1.1}
\end{equation*}
$$

The main purpose of the present note is to give a proof of (1.1). The proof is given by making use of the theory of J. H. C. Whitehead. ${ }^{5)}$ In the proof we shall obtain several relations among the various invariants of E, X, B and F. In conclusion, we shall formally extend (1.1) to a more general situation.
§ 2. Following J. H. C. Whitehead, ${ }^{5)}$ we have the exact sequence $\sum_{*}(K)$ and the partial exact sequence $\sum^{*}(K ; G)$ for any simply connected $C W$-complex K and any Abelian group G :

$$
\begin{gathered}
\sum_{*}(K): \ldots \xrightarrow{j_{*}} H_{r+1}(K) \xrightarrow{d_{*}} \Gamma_{r}(K) \xrightarrow{i_{*}} \Pi_{r}(K) \xrightarrow{j_{*}} \cdots, \\
\sum^{*}(K ; G): \cdots \xrightarrow{j^{*}} \Gamma^{r}(K ; G) \xrightarrow{i^{*}} \Pi^{r}(K ; G) \xrightarrow{d^{*}} H^{r+1}(K ; G) \xrightarrow{j^{*}} \cdots
\end{gathered}
$$

These are derived from the sequence

$$
\ldots \xrightarrow{j_{r+1}} C_{r+1}(K) \xrightarrow{d_{r+1}} A_{r}(K) \xrightarrow{j_{r}} C_{r}(K) \xrightarrow{d_{r}} \cdots
$$

and the G-dual

$$
\cdots \xrightarrow{d_{r}^{\#}} C_{r}^{\#}(K ; G) \xrightarrow{j_{r}^{\#}} A_{r}^{\#}(K ; G) \xrightarrow{d_{r+1}^{\#}} C_{r+1}^{\#}(K ; G) \xrightarrow{j_{r+1}^{\#}} \cdots,
$$

where $C_{r+1}(K)=\pi_{r+1}\left(K^{r+1}, K^{r}\right), \quad A_{r}(K)=\pi_{r}\left(K^{r}\right)$ if $r \geqq 2, C_{2}(K)$ is π_{2} $\left(K^{2}, K^{1}\right)$ made Abelian, d_{r+1}, j_{r} are the boundary and injection homomorphisms, and $C_{r}^{\#}(K ; G)=\operatorname{Hom}\left(C_{r}(K), G\right), A_{r}^{\#}(K ; G)=\operatorname{Hom}\left(A_{r}\right.$ $(K), G), d_{r+1}^{\#}, j_{r}^{\#}$ are the G-dual of $C_{r}(K), A_{r}(K), d_{r+1}, j_{r}$ respectively. ${ }^{6)}$ Recall that

$$
\begin{aligned}
& \Gamma_{r}(K)=j_{r}^{-1}(0), \quad \Pi_{r}(K)=A_{r}(K) / d_{r+1} C_{r+1}(K) \\
& H_{r}(K)=Z_{r}(K) / \partial_{r+1} C_{r+1}(K) ; \\
& \Gamma^{r}(K ; G)=d_{r+1}^{\#-1}(0), \quad \Pi^{r}(K ; G)=A_{r}^{\#}(K ; G) / j_{r}^{\#} C_{r}^{\#}(K ; G), \\
& H^{r}(K ; G)=Z^{r}(K ; G) / \delta_{r} C_{r-1}^{\#}(K ; G),
\end{aligned}
$$

where $\partial_{r+1}=j_{r} \circ d_{r+1}, \delta_{r}=d_{r}^{\#} \circ j_{r-1}^{\#}, Z_{r}(K)=\partial_{r}^{-1}(0)$ and $Z^{r}(K ; G)=\delta_{r+1}^{-1}(0)$. We notice that $\Pi_{r}(K)$ is isomorphic with $\pi_{r}(K)$ by the injection homomorphism. Using this isomorphism we make the identification

$$
\Pi_{r}(K)=\pi_{r}(K) .
$$

Let $l_{K}^{r}: A_{r}(K) \longrightarrow \Pi_{r}(K)$ be the natural homomorphism, and let $l_{K}^{r} \in \Pi^{r}\left(K ; \pi_{r}(K)\right)$ be the class containing $l_{K}^{r} \in A_{r}^{\text {\#\# }}\left(K, \pi_{r}(K)\right)$. Then $l_{K} \circ d_{r+1}: C_{r+1}(K) \longrightarrow A_{r}(K) \longrightarrow \Pi_{r}(K)$ is trivial, and so $d_{r+1}^{\#} l_{K}^{n}=0$. Therefore we have

$$
\begin{equation*}
l_{K}^{r} \in \Gamma^{r}\left(K, \pi_{r}(K)\right), \quad i^{*} l_{K}^{r}=\boldsymbol{l}_{K}^{r} . \tag{2.1}
\end{equation*}
$$

Let $f: K \longrightarrow K^{\prime}$ be a cellular map of K into a cell complex K^{\prime}. Then f induces the homomorphisms $f_{\text {\#1 }}^{\prime}: C_{r}(K) \longrightarrow C_{r}\left(K^{\prime}\right)$ and $f_{\# 1}^{\prime \prime}$: $A_{r}(K) \longrightarrow A_{r}\left(K^{\prime}\right)$, and further these induce the homomorphisms f_{*} : $\sum_{*}(K) \longrightarrow \sum_{*}\left(K^{\prime}\right)$ and $f^{*}: \sum^{*}\left(K^{\prime} ; G\right) \longrightarrow \sum^{*}(K ; G)$. As for the group $\Pi^{r}(K ; G)$, we shall here note the following fact: Let g : $K^{r-1} \longrightarrow K^{\prime}$ be a cellular map with a (cellular) extension $\tilde{g}: K^{r} \longrightarrow K^{\prime}$. Then \tilde{g} determines the homomorphism $\breve{g}^{*}: \Pi^{r}\left(K^{\prime} ; G\right) \longrightarrow \Pi^{r}(K ; G)$. \tilde{g}^{*} does not depend on the choice of an extension \tilde{g}, and further it is an invariant of the homotopy class of $g .{ }^{5)}$ Therefore we may write $g^{*}=\tilde{g}^{*}$.

Let (Y, Y^{\prime}) be a pair of topological spaces, and let $K(Y), K\left(Y^{\prime}\right)$ be the singular polytopes of Y, Y^{\prime}. Then $K\left(Y^{\prime}\right)$ is the closed subcomplex of the $C W$-complex $K(Y)$. Let $\kappa: K(Y) \longrightarrow Y$ be the projection. Then κ induces the isomorphism $\kappa_{\text {\# }}\left(\kappa^{*}\right)$ between the homotopy (singular cohomology) exact sequences for ($K(Y), K\left(Y^{\prime}\right)$) and for $\left(Y, Y^{\prime}\right)$. By this isomorphism, we shall identify two exact sequences. Let $f:\left(Y, Y^{\prime}\right) \longrightarrow\left(Z, Z^{\prime}\right)$ be a continuous map. Then f induces a cellular map $K(f):\left(K(Y), K\left(Y^{\prime}\right)\right) \longrightarrow\left(K(Z), K\left(Z^{\prime}\right)\right)$, and
the induced homomorphisms $K(f)_{\text {\# }}$ and $f_{\text {\# }}\left(f^{*}\right.$ and $\left.K(f)^{*}\right)$ are equivalent to each other by $\kappa_{\#}\left(\kappa^{*}\right)$. ${ }^{77}$

Let $M(Y)$ be the minimal subcomplex of the total singular complex of Y. ${ }^{8)}$ Then it is obvious that $M(Y)$ has a geometrical realization $\bar{M}(Y)$ in the singular polytope $K(Y)$. Further it can be seen ${ }^{9)}$ that $\bar{M}(Y)$ is a deformation retract of $K(Y)$, and that we can find the retraction $\varphi: K(Y) \longrightarrow \bar{M}(Y)$ which is cellular.

If Y is simply connected, $K(Y)$ and so $\bar{M}(Y)$ are also simply connected. Therefore we can consider the above sequences of J. H. C. Whitehead for $K(Y)$ and $\bar{M}(Y)$, and they are isomorphic by the homomorphism induced by φ.
§ 3. The fiber space (E, p, B) stated in $\S 1$ is precisely as follows: The base space B is a space obtained by attaching cells of dimensionality $q+1, q+2, \ldots$ to X in such a way that $\pi_{i}(B)=0$ for $i \geqq q$, and the total space E is the space of paths $\{f: I \longrightarrow B$, $f(0) \in X, f(1) \in B\}$, where I is the unit interval. Further the projection $p: E \longrightarrow B$ is the map such that $p(f)=f(1)$ for all $f \in E$. Thus the fiber F is the space of paths $\left\{f: I \longrightarrow B ; f(0) \in X, f(1)=x_{0}\right\}$. Notice that X is the subspace of B.

Let $\xi: F \subset E$ be the inclusion map, and let $\eta: X \longrightarrow E$ be a map such that $(\eta(x))(t)=x$ for $x \in X, t \in I$. Then ξ and η induce the isomorphisms

$$
\xi_{\text {\# }}: \pi_{q}(F) \approx \pi_{q}(E), \quad \eta_{\text {\# }}: \pi_{q}(X) \approx \pi_{q}(E) .
$$

Since F is ($q-1$)-connected, we have the Hurewicz isomorphism: $\pi_{q}(F) \approx H_{q}(F)$. We shall use these isomorphisms to make the identifications

$$
H_{q}(F)=\pi_{q}(F)=\pi_{q}(E)=\pi_{q} .
$$

Then, the basic cohomology class $\boldsymbol{b}^{q} \in H^{q}\left(F, \pi_{q}\right)$ is the element which goes to the identical isomorphism by the natural homomorphism

$$
H^{q}\left(F ; \pi_{q}\right) \approx \operatorname{Hom}\left(H_{q}(F), \pi_{q}\right)=\operatorname{Hom}\left(H_{q}(F), H_{q}(F)\right) .
$$

Since the inclusion $\zeta: X \subset B$ induces the isomorphism $\zeta_{\#}: \pi_{i}(X)$ $\approx \pi_{i}(B)$ for $i<q$, we may choose $M(X)$ and $M(B)$ as follows:

$$
M(X) \subset M(B), \quad M(X)^{q-1}=M(B)^{q-1}
$$

Let $h^{\prime}: \bar{M}(B)^{q-1} \longrightarrow \bar{M}(X)^{q-1} \subset K(X)$ be the identical map, and let $h=h^{\prime} \circ\left(\varphi \mid K(B)^{q-1}\right): K(B)^{q-1} \longrightarrow K(X)$. Then it follows ${ }^{10)}$ that h^{\prime} has the cellular extension $\tilde{h}^{\prime}: \bar{M}(B)^{q} \longrightarrow K(X)$ and that the secondary obstruction $\boldsymbol{c}^{q+1}\left(h^{\prime}\right) \in H^{q+1}\left(\bar{M}(B), \pi_{q}\right)$ is geometrically equivalent to the Eilenberg-MacLane invariant $\boldsymbol{k}_{n}^{q+1} \in H^{q+1}\left(\pi_{n}, n ; \pi_{q}\right)$. Therefore, if we write $\boldsymbol{k}_{n}^{q+1} \in H^{q+1}\left(K(B) ; \pi_{q}\right)$ the element which corresponds to \boldsymbol{k}_{n}^{7+1}
by the natural isomorphism $H^{q+1}\left(K(B) ; \pi_{q}\right) \approx H^{q+1}\left(\pi_{n}, n ; \pi\right)$, then we have

$$
\boldsymbol{c}^{q+1}(h)=\check{\boldsymbol{k}}_{n}^{2+1}
$$

Let $\boldsymbol{h}_{K(B)}^{q} \in \Pi^{q}\left(K(B) ; \pi_{q}\right)$ be a class containing the element $l_{K(X)}^{q}{ }^{\circ}$ $\tilde{h}_{\#}^{\prime \prime} \in A_{q}^{\#}\left(K(B) ; \pi_{q}\right)$. Then it is obvious that

$$
\begin{equation*}
h^{*} \boldsymbol{l}_{K(X)}^{q}=\boldsymbol{h}_{K(B)}^{q}, \tag{3.1}
\end{equation*}
$$

where $h^{*}: \Pi^{q}\left(K(X) ; \pi_{q}\right) \longrightarrow \Pi^{q}\left(K(B) ; \pi_{q}\right)$ is the homomorphism determined by h. Furthermore, since $c^{q+1}(\tilde{h})=\dddot{h}_{\#}^{\prime} \circ d_{q+1}$ by the definition, we see that

$$
\begin{equation*}
\overline{\boldsymbol{k}}_{n}^{q+1}=d_{B}^{*} \boldsymbol{h}_{K(B)}^{q}, \tag{3.2}
\end{equation*}
$$

where $d_{B}^{*}: \Pi^{q}\left(K(B) ; \pi_{q}\right) \longrightarrow H^{q+1}\left(K(B) ; \pi_{q}\right)$.
We have the commutative diagram
where all the horizontal arrows denote the isomorphisms induced by the inclusion maps, and h^{-1} is the inverse map of h^{\prime}. Therefore it holds that $h^{*-1}=K(\zeta)^{*}$ and so from (3.1)

$$
\begin{equation*}
\boldsymbol{l}_{K(X)}^{q}=K(\zeta)^{*} \boldsymbol{h}_{K(B)}^{q} . \tag{3.3}
\end{equation*}
$$

Since $p \circ \eta=\zeta$, we have the commutative diagram

$$
\begin{aligned}
& \Pi^{q}\left(K(E) ; \pi_{q}\right) \\
& K(p)^{*} \\
& K(\eta)^{*} \\
& \Pi^{q}\left(K(X) ; \pi_{q}\right)
\end{aligned}
$$

Further it is obvious that $K(\eta)^{*}$ is isomorphic and $\boldsymbol{l}_{K_{(X)}^{q}}^{q}=K(\eta)^{*} \boldsymbol{l}_{K_{(E)}^{g}}^{q}$. Therefore it follows from (3.3) that

$$
\begin{equation*}
\boldsymbol{l}_{K(E)}^{q}=K(p)^{*} \boldsymbol{h}_{K(B)}^{q} . \tag{3.4}
\end{equation*}
$$

Since $H_{q}(F) / \sum_{q}(F)=0$, we have $j_{q} A_{q}(K(F))=Z_{q}(K(F))$. ${ }^{355)} \quad$ Since further $Z_{q}(K(F))$ is free Abelian, there exists a homomorphism $\lambda: Z_{q}(K(F)) \longrightarrow A_{q}(K(F))$ such that
(3.5) $j_{F} \circ \lambda: Z_{q}(K(F)) \longrightarrow C_{q}(K(F))$ is the inclusion.

Let $u \in A_{q}^{\#}\left(K(B) ; \pi_{q}\right)$ be a representative of $\boldsymbol{h}_{K(B)}^{q}$. Then it follows from (3.4) that $u \circ K(p)_{\text {\# }} \in A_{7}^{\text {\# }}\left(K(E) ; \pi_{q}\right)$ is a representative of $\boldsymbol{l}_{K(E)}^{g}$. On the other hand, we see from (2.1) that $l_{K_{(E)}^{p}}^{q}$ is a representative of $\boldsymbol{l}_{K(E)}^{g}$. Therefore it follows from the definition of $\Pi^{q}\left(K(E) ; \pi_{q}\right)$ that there exists an element $v \in C_{q}^{\sharp}\left(K(E) ; \pi_{q}\right)$ such that

$$
\begin{equation*}
v \circ j_{E}=l_{K(E)}^{g}-u \circ k(p)_{\#}, \tag{3.6}
\end{equation*}
$$

where $j_{E}=j_{q}: A_{q}(K(E)) \longrightarrow C_{q}(K(E))$ is the injection.
Consider the commutative diagram
and notice that

$$
l_{K(E)}^{q} \circ K(\xi)_{\text {\#\# }}^{\prime \prime}=l_{K\left(r^{\prime}\right)}^{q}, \quad K(p)_{\#}^{\prime \prime} \circ K(\xi)_{\#}^{\prime \prime}=0 .
$$

Then we see from (3.6) and (2.1)

$$
\begin{aligned}
& v \circ K(\xi)_{\#}^{\prime} \circ \partial_{q+1}=v \circ j_{E} \circ K(\xi)_{\# \#}^{\prime \prime} \circ d_{q+1} \\
& \quad=\left(l_{K(E)}^{q}-u \circ K(p)_{\#}^{\prime} \circ K(\xi)_{\#}^{\prime \prime} \circ d_{q+1}^{\prime}\right. \\
& \quad=l_{K(F)}^{q} \circ d_{q+1}-u \circ K(p)_{\#} \circ K(\xi)_{\# \#}^{\prime \prime} \circ d_{q+1}=0,
\end{aligned}
$$

and so $v \circ K(\xi)_{\#}^{\prime} \in Z^{q}\left(K(F) ; \pi_{q}\right)$. Moreover we have for any element $z \in Z_{q}(K(F))$

$$
\begin{align*}
& v \circ K(\xi)_{\#}^{\prime}(z)=v \circ K(\xi)_{\#}^{\prime} \circ j_{F^{\prime}} \circ \lambda(z) \\
& =v \circ j_{E} \circ K(\xi)_{\# \#}^{\prime \prime} \circ \lambda(z) \tag{3.7}\\
& =\left(l_{K(E)}^{g}-u \circ K(p)_{\text {\# }}\right) \circ K(\xi)_{\# \#}^{\prime \prime} \circ \lambda(z)=l_{K\left(F^{\prime}\right)}^{q} \circ \lambda(z) .
\end{align*}
$$

Since it holds obviously

$$
\nu \circ j_{F}=l_{K\left(F^{\prime}\right)}^{q},
$$

where $\nu: Z_{q}(K(F)) \longrightarrow H_{q}(K(F))=\pi_{q}$ is the natural homomorphism, we have from (3.5) and (3.7)

$$
v \circ K(\xi)_{\text {\# }}^{\prime}(z)=l_{K\left(F^{\prime}\right)}^{q} \circ \lambda(z)=v \circ j_{F^{\prime}} \circ \lambda(z)=\nu(z) .
$$

Therefore we see from the definition of \boldsymbol{b}^{q} that the cocycle $v \circ K(\xi)_{\text {\# }}^{\prime}$ is a representative of \boldsymbol{b}^{q}. Thus $\delta^{*} \boldsymbol{b}^{q}$ is the class of $H^{q+1}(K(E), K(F)$; π_{q}) containing $\delta_{E} v$. However

$$
\begin{align*}
& \delta_{E} v=v \circ \partial_{E}=v \circ j_{E} \circ d_{E} \\
& =\left(l_{K(E)}^{\prime}-u \circ K(p)_{\text {\# }}\right) \circ d_{E} \\
& =-u \circ K(p)_{\#}^{\prime \prime} \circ d_{E} \tag{2.1}\\
& =-u \circ d_{B} \circ K(p)_{\text {\# }}^{\prime} .
\end{align*}
$$

Therefore

$$
\delta^{*} \boldsymbol{b}^{q}=-p^{*} \circ d_{B}^{*} \circ \boldsymbol{h}_{K(B)}^{q}
$$

and it follows from (3.2) that

$$
\delta^{*} \boldsymbol{b}^{q}=-p^{*} \overline{\boldsymbol{k}}_{n 2}^{q_{2}^{+1}} .
$$

Namely we have (1.1).
§ 4. Let X be a 1-connected space, and write briefly $\pi_{j}(X)=\pi_{j}$ $(j=2,3, \ldots)$. Consider a space B obtained by attaching cells of dimensionality $r+1, r+2, \ldots$ to X in such a way that $\pi_{i}(B)=0$ for $i \geqq r$, and construct a fiber space (E, p, B) by the same way
as in §3. Then we can see easily that the fiber F is an $(r-1)$ connected space, and the homology group of B is naturally equivalent to that of the Postnikov model complex $K_{r_{-1}}=K\left(1, \pi_{2}, \ldots, \pi_{r-1}\right.$; $0, \boldsymbol{k}_{2}, \ldots, \boldsymbol{k}_{r_{-1}}$), where \boldsymbol{k}_{i} denotes the Postnikov invariant of the space $X .^{11}$ Let $\overrightarrow{\boldsymbol{k}}_{r-1} \in H^{r+1}\left(B ; \pi_{r}\right)$ be the geometrical equivalent of the element $\boldsymbol{k}_{r_{-1}} \in H^{r+1}\left(K_{r_{-1}} ; \pi_{r}\right)$. Then we have by the similar arguments as in §3

$$
\tau \boldsymbol{b}^{r}=-\overline{\boldsymbol{k}}_{r-1},
$$

where \boldsymbol{b}^{r} is the basic cohomology class of F, and $\tau: H^{r}\left(F ; \pi_{r}\right) \longrightarrow$ $H^{r+1}\left(B ; \pi_{r}\right)$ is the transgression.

References

1) H. Cartan et J-P. Serre: C. R. Acad. Sci., Paris, 234, 288-290 (1952). See also G. W. Whitehead: Proc. Nat. Acad. Sci., U. S. A., 38, 426-430 (1952).
2) J-P. Serre: Ann. Math., 54, 425-505 (1951).
3) J. H. C. Whitehead: Ibid., 54, 68-84 (1951).
4) S. Eilenberg and S. MacLane: Ibid., 51, 514-533 (1950).
5) J. H. C. Whitehead: Proc. Lond. Math. Soc., 12, 385-416 (1953). He does not necessarily assume that K is simply connected.
6) See $\S 5$ in 5) for the definition when $r<2 . j_{2}$ is the composite of the injection $A_{2}(K) \rightarrow \pi_{2}\left(K^{2}, K^{1}\right)$ followed by the natural homomorphism $\pi_{2}\left(K^{2}, K^{1}\right) \rightarrow C_{2}(K)$.
7) For the detailed accounts, see the followings: J. B. Giever: Ann. Math.. 51, 178-191 (1950); S. T. Hu: Osaka Math. J., 2, 165-209 (1950); J. H. C. Whitehead: Ann. Math., 52, 51-110 (1950).
8) S. Eilenberg and J. A. Zilber: Ann. Math., 51, 499-513 (1950).
9) See p. 504 of 8).
10) See p. 519 of 4).
11) M. M. Postnikov: Doklady Akad. Nauk SSSR., 76, 359-362 (1951); ibid., 76, 789-791 (1951). See also the report of P. J. Hilton (mineographed) and the paper of K. Mizuno (to appear in J. Inst. Polyt., Osaka City Univ., 5 (1954)).
