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1. Let X be a topological space with vanishing homotopy
groups r(X) for i = n, q(l< n< q), and let Xo e X be a base point.
For the sake of brevity, we write in the ollowing r=cr.(X) and
rq-Crq(X). We call a space of type (or, r) any space Y such that
r(Y)--O(i = r) and r(Y)cr. Then, following Cartan-Serre, ) we
have the fiber space (E, p, B) in the sense of Serre) such that

i) the total space E is of the same homotopy type as X,
ii) the base space B is a space of type (.., n), and XC B,

iii) the fiber F=p-(Xo) is a space of type (cry, q).

,o,q Z,e+l,oConsider in this fiber space the transgression r q/, ,,+

of the singular cohomology spectral sequence with coefficients in
v.q.2 Then, since the singular homology group H(F; rq)--0 for i<q,
we have *"-H(F;,+ .), *q+’--Hq(B;+ q) and

r--p*-lot* Hq(F; rq), Hq+(B; rq),
where * "Hq(F; rq)H+(E, F; rq) is the coboundary operator,
and p* Hq+(B; q) Hq*(E, F; rq) is the homomorphism induced
by p. Let bqeHq(F;rq) be the basic cohomology class,) and let

k,+ e Hq+(B;crq) be the geometrical realization of the Eilenberg-
MacLane invariant kg+ e Hq+(cr,,n;rq) of the space X. *) Then bq

and k+ are related by r as follows-

(1.1) ,-b- -k+1.

The main purpose of the present note is to give a proof of (1.1).
The proof is given by making use of the theory of J. H. C. Whitehead.
In the proof we shall obtain several relations among the various
invariants of E, X, B and F. In conclusion, we shall formally extend
(1.1) to a more general situation.

2. Following l. H. C. Whitehead, we have the exact sequence
.(K) and the partial exact sequence _*(K;G) or any simply
connected CW-complex K and any Abelian group G:

.(K) __9"., H/I(K) d__._, Fr(g) i., Hr(K)J*--, ..,
j,j* i* d*

Hr+I(K G)*(K; G)’-.. r(g; G)(K;G)
These are derived from the sequence
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+ c+,(K) A(K) C,(K)
and the G-dual

dC(K; G)iA(; G) d+ C+(; G) Y+ -.-,
where C,.+(K)=+(K+,K), A(K)=(K) if r2, C(K)
(K,K) made Abelian, d+, j are the boundary and injection
homomorphisms, and C(K; G)=Hom (C(K), G), A(K; G)=Hom (A
(K), G), d?+, Y are the G-dual of C(K), A(K), d+, j respectively.)

Recall that

F(K)=jj(0), H(K)=A(K)/d+C+(K)
(K)=Z(K)/+C+(g);
r(K; G)=d?(0), H(K; G)=A(K; G)/jC(K; G),
H(K; G)=Z(K; G)/rC_(K; G),

where +=j d+, =d j?_, Z(K)=7(O) and Z(K;
We notice hat H(K) is isomorphic with (K) by the injection
homomorphism. Using this isomorphism we make the identification

() ().
Let l:A(K) :H(K) be the natural homomorphism, and

let l e H(K; (K)) be the class containing l A(K, (K)). Then
ldri:Cr+(K) A(K)---H(K) is trivial, and so dSl=O.
Therefore we have

(2.) t e r(K, (g)), i*=t.
Let f:K: >K be a cellular map of K into a cell complex .K.

Then f induces the homomorphisms f" C(K)- C(K) and f"
A(K)-- A(K), and 2urther these induce the homomorphisms f,:
,(K)-,(K) and f*: *(K; G)>*(K; G). As for the
group H"(K; G), we shall here note the 2ollowing act: Let g:
K- > K be a cellular map with a (cellular) extension " K K.
Then determines the homomorphism * H(K;G)H(K; G).

* does not depend on the choice of an extension , and further
it is an invariant of the homotopy class of g. Therefore we may
write g* *.

Let (Y, Y) be a pair of topological spaces, and let K(Y), K(Y)
be the singular polytopes of Y, Y. Then K(Y) is the closed sub-
complex of the CW-complex K(Y). Let :K(Y),Y be the
projection. Then x induces the isomorphism (*) between the
homotopy (singular cohomology) exact sequences or (K(Y), K(Y))
and for (Y, Y). By this isomorphism, we shall identify two exact
sequences. Let f: (Y, Y), (Z, Z) be a continuous map. Then
f induces a cellular map K(f):(K(Y), K(Y))---,(K(Z), K(Z’)), and
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he induced homomorphisms K(f) and fu(f* and K(f)*) are equiv-
alent to each other by (*).

Let M(Y) be the minimal subcomplex of the total singular
complex of Y.S Then it is obvious that M(Y)has a geometrical

realization M(Y) in the singular polytope K(Y). Further it can

be seen that M(Y) is a deformation retract of K(Y), and that we

can find the retraction q’K(Y),M(Y) which is cellular.

If Y is simply connected, K(Y) and so M(Y) are also simply
connected. Therefore we can consider the above sequences of
J. H. C. Whitehead for K(Y) and M(Y), and they are isomorphic
by the homomorphism induced by cp.

:3. The fiber space (E,p, B) stated in 1 is precisely as
follows: The base space B is a space obtained by attaching cells
of dimensionality q+l, q+2, to X in such a way that r,(B)=0
for iq, and the total space E is the space of paths [f:I-.--B,
f(0) e X, f(1)e B}, where I is Che unit interval. Further the pro-
jection p:E-,B is the map such that p(f)=f(1) for all f e E.
Thus the fiber F is the space of paths If: I, B; f(O) e X, f(1)=Xo}.
Notice that X is the subspace of B.

Let $:FE be the inclusion map, and let v:X----,E be a
map such that (v(x))(t)=x for x e X, t e I. Then and v induce the
isomorphisms

$ rq(F) rq(E), rq(X) rq(E).
Since F is (q-1)-connected, we have the Hurewicz isomorphism:
rq(F) Hq(F). We shall use these isomorphisms to make the identifi-
cations

Hq(F)--rq(F)
Then, the basic cohomology class bq Hq(F, rq) iS the element which
goes to the identical isomorphism by the natural homomorphism

Hq(F; rq)Hom (//q(F), rq)--Hom (//q(F), Hq(F)).
Since the inclusion " XC B induces the isomorphism r,(X)

r,(B) for i<q, we may choose M(X) and M(B) as follows"

M(X) M(B), M(X)-t---.M(B)-.
Let h" M(B)q--M(X)- K(X) be the identical map, and

let h=h’ (cp [K(B)q-). K(B)- K(X). Then it follows that h’
has the cellular extension /"/r(B)q > K(X) and that the secondary

obstruction eq+t(h) e Hq+(M(B), rq) is geometrically equivalent to
the Eilenberg-MacLane invariant k+ e Hq+(r, n; rq). Therefore, if

we write k+e H/(K(B); r) the element which corresponds to k+
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by the natural isomorphism Ha+I(K(/’); 7r)H+[,, n; 7r), then we
have

c+l(h)-k+.
Let h: e Hq(K(B); 7r) be a class containing the element lx

h e A(K(B); ). Then it is obvious that

(3.1) h*lx h.,
where h* H(K(X); )--- H(K(B); ) is the homomorphism deter-
mined by h. Furthermore, since c+()- d+ by the definition,
we see that

(3.2) k-dh,where g" H(K(B); q) Hq+(K(B); q).
We have the commutative diagram

(K(B). ) (M(B)")n(K(B)" )
,

n(K(; ) H(M(X); w) H(K(X); ),
where all the horizontal arrows denote the isomorphisms induced
by the inclusion maps, and h- is the inverse map of h. Therefore
it holds that h*-=K(ff)* and so from (3.1)

(3.3) lcx=K()*hc.
Since p v=, we have the commutative diagram

H(K(E); w,)(P) H(K(B);

K(v)* I
n(K(X); )

q qFurther it is obvious that K(v)* is isomorphic and Ix=K(v)*l(
Therefore it follows from (3.3) that

q * q(3 4) t--K(p) h.
Since H(F)/(F) O, we have jA(K(F)) =Z(K(F)). Since

further Z(K(F)) is free Abelian, there exists a homomorphism
Z(K(F)), A(K(F)) such that

(8.5) L, . Z(K(F))----
is the inclusion.

qLet u e A(K(B); ,) be a representative of hz. Then it
follows from (8.4) that u K(p) e A(K(E); a) is a representative

q qof lz. On the other hand, we see from (2.1) that Iz is a
representative of lg. Therefore it follows from the definition of
IIa(K(E); ) that there exists an element v e C(K(E); ) such that

(3.6) v oj l() u
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where j--j "A(K(E)) C(K(E)) is the injection.
Consider the commutative diagram

and notice
q

Then we see from (3.6) and 2.1)
v K() -v K() d
=(l()-u
=t() d+-u g(p) K(e) d+-O,

and so v K($) e Zq(K(F); vq). Moreover we have for any element
z z(K())

v g(e)(z)=v K(,) , (z)
(37) =v j ( ) (z)

"o q (z)
Since it holds obviously

where v’Z(K(F)):- >Hq(K(F))=q is the natural homomorphism,
we have from (3.5) and (3.7)

(z)- j, (z)=,(z).v K(,)(z) v

Therefore we see from the definition of bq that the cocycle v K($)
is a representative of bq. Thus 8*b is the class of Hq+(K(E), K(F);
q) containing rv. However

(see (2.1))

Therefore
q*b- _p* d* h

and it follows from (3.2) that
,bq-- _p,k/1.

Namely we have (1.1).

4. Let X be a I-connected space, and write briefly r.(X)-Tr
(j=2,3, ...). Consider a space B obtained by attaching cells of
dimensionality r+l, r+2, to X in such a way that r(B)-0
for i>_r, and construct a fiber space (E, p, B)by the same way
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as in 3. Then we can see easily that the fiber F is an (r-1)-
connected space, and the homology group of B is naturally equivalent
to that of the Postnikov model complex K_--K(1, r, ..., r_;
0, k=, ,k_), where k denotes the Postnikov invariant of the

space X.) Let k_ e H +(B; r) be the geometrical equivalent
of the element k,._ e H"/(K,_; r,.). Then we have by the similar
arguments as in 3

br= -kr_l
where b is the basic cohomology class of F, and -’H"(F; r,.)-,
H/(B; r) is the transgression.
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