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74. On Multiple Distributions

By Tadashige ISHIHARA
Department of Mathematics, Osaka University

(Comm. by K. KUNU(I, M.J.A., May 13, 1954)

Equations of evolution have been discussed by several authors,
but it seems to me that researches have been done generally with
respect to parametric operatorial equations or parametric distribu-
tional equations and scarcely with respect to proper distributional
equations. So as a first step to the researches of the latter it will
be of some interest to consider the general relations between para-
metric and proper distributional equations. To give a clarification
of this relation we introduced the notion of multiple distributions
defined in 3. At the same time the study of our multiple distri-
butions will be helpful for the construction of resolvants of proper
distributional equations.

Some other problems have also close relation to the study of
multiple distributions, say, multiplication by particular distribution,
the distributional treatment of A-type functions or of S-matrix.
In this paper discussions of these problems are not stated, however,
5, 6, and 3 have relations to some parts of them.

1. First we modify a few B. H. Arnold’s results. Let
S= [O,x,y... be a vector space over the real number field with
zero vector , and be any collection of subsets of S satisfying the
following axioms

(B1) For any xeS, Ix} .
(B2) The union of any two sets ot 3 is a set of 3.
(B3) Any subset of a set of 3 is a set of .
(B4) Any scaler multiple of a set of is a set of .
(B5) The convex hull of a set of 3 is a set of .

We call the elements of bounded subsets of the vector space S.

Definition 1. A subset G of S is called open if and only if
whenever g e G, there exists a convex set N such that for any B e

there exists a 2 >0 which satisfies g+ 2B N G.
A set TS is called topologically bounded if and only if for

each neighborhood U of 0 there exists a with TC U. We denote
by the collection of all subsets of S which are topologically
bounded.

Lemma 1. , and the collection satisfies axioms from
B) to B5).
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Lemma 2. The topologies defined in S by the collection %(rz)
and by the collection () are identical.

Theorem 1. Definition I makes S a locally convex bornographic
topological vector space.

2. We consider the vector space of all real valued infinitely
differentiable unctions having compact carriers. We denote the
space defined on the n-dimensional Euclidean space R(x)by (x),
similarly the one on R(t)by (t) and the one on R+(x,t) by
(x, t), where m0 and n:>0. We use also notations )(x), -)(t),
)(x, t) for the space of all ,-times continuously differeniable func-
tions having compact carriers defined on R(x), R(t), R+(x, t) and
denote the totality of bounded sets in heir natural topology by
(t), (t), etc. Further we denote their strong dual spaces by
c)’(x), )’(t) etc., and denote the convergence in the topology of

)’ by the symbol _(’)_.
Now we take a sequence of functions f(t)[ e (t), (’),Q} where

Q is a definite distribution of )’(t) for ,, and often call it
a (,, Q)-sequence. We take the totality of such sequences and

denote it by S’(t), i.e. ’(t)-fBr[Br--=-[.}, ,(:)_Q} and consider
the minimum collection of subsets of (t) which satisfies axioms
from B1) to B5) and includes both (t) and (t). For the sake
of simplicity we call such a collection an Arnold’s family. In this
case such an Arnold family (t) really exists and uniquely deter-
mined and is given by a collection of sets of the following form;
(t)-- [B(t)--((B(t) (J U=,B,’(t) ))IB (t), B’ ’(t), k--l, 2,

where the symbol ((A)) means the convex hull of a set A. We de-
noe by (t) a fundamental neighborhood system of 0 which is in-
duced by 3(t) obeying ,he method 1, its elemen by N(t), and
denote the space (t) having this topology by (t).

Next we consider the tensor product space .(x)(R)(t), i.e.

where , means finite linear sum. We consider here the Arnold’s
family (x, t) which includes a family of subsets

[B(x)@B(t)[B (t), B 3(t)t,
where

B(x)(.B(t) [cp(x)(t)[cp B(x), B(t)i.
Then (x, t) is also uniquely determined and is given by the collec-
tion of subsets [((B(x)(R)B(t)))[B 93(x), B e (t), and their subsets}.
We denote a fundamental neighborhood system of 0 which this
family induces by .(x, t)-- [N(x, t)}.

We find similarly in the space (x, t), the Arnold’s family which
includes (x, t) and 3.(x, t) i.e.,
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[((B(x, t) t] B(x, t) ))lB(x, t) e 3(x, t), B(x, t) e.(x, t)t
A undamental neighborhood system of 0 is given by

{((V(x, t) N(x, t) ))! V (x, t), N (x, t)},
where (x, t) means a fundamental neighborhood system of in the
natural topology of (x,t). We denote the space (x,t) having
this topology by o(x, t) or simply by

Thus e(x,t) is introduced by a single distribution Q, but
a similar process is possible for a fixed family of distributions
{Q] A}. That is to say B(t) is expressed by B(t):((B(t)

=U.,.;())), where ._ Q, and of course , is larger
han the orders of distribution Q. The orms of Arnold’s amily
in the other spaces, say, (x)(t) and (x,t) is quite similar.
We denote the space (t) or (x, t) having this topology by
or e(x, t). The orders of the distribution Q and the orders of
the convergence ,=,() can be various, but we have inerest only
in the case when both and , are constants, and consider only
this case. From he same family of distributions [Q}, we can
also construct another (t) i.e., we modify a bounded set B(t) as
ollowing.

Taking a family of sequences such that
[[j} For any neighborhood of 0 of (’(t), V, there exists)

]0 such that (i) for any JJo, for any e A, -Q
e A (ii) <o,,+.; e 3(t),

we call it a (,, ) family and write this element by B’(t). Now
we consider B(t)=((B(t) gB(t))) or its arbitrary subset. The
other orms are quite the same. We denote the space (t) or

(x, t) having this topology by e(t) or q(x, t). We often consider

properties common o each of the spaces e(x, t), o(x, t), e(x, t).
In such a case we denote them collectively by e, similarly denote

e(t), e.,(t), (t) by (t).
Lemma . For any neighborhood N(x, t) of in (x)(t) and

for any bounded set B(x), there exists a neighborhood of in (x)
such that N(x, t)V(x)B(t). Similarly for any bounded set B(t)
there exists a neighborhood of , V(x), in (x) such that N(x, t)
V(x)B(t).
Corollary. T e e(x, t) is separately continuous for (x) and

(t).
3. We consider the strong dual space of and the closure

of the space in the topology of , and denote this closure by

’. If T e we have a filter on (x, t) such thatTand

we can prove (f, Q} converges with respect to ?,T uniformly
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for p e 3(x) and independently of which converges to T in the
opology of .

Definition 2. Multiple distribution of a distribution T e )(x, t)
by a distribution Q e (t) is a distribution Te e ’(x) such that for

(x), (T, }--t, .(f Q}
Theorem 2. If T e, then T is continuous uniformly for

B(x) with respect to any (,, Q) sequence, where is an arbitrary
constant and this limit coincides with Te.

Corollary. If T ’ and [[} [2 A is a (,, pQ) family, then
T is continuous with respect to the sequence []j-1, 2, uniform-
ly for e A and uniformly for e B(x).

Theorem 3. If T e (x, t) and ( T, .;) makes a Cauchy sequence
with respect to any (, pQ) sequence [} for =0, 1, uniformly for

e B(x), then T e.
Corollar. If T e ’(x, t) and (T, .} .i-1,2, mkes

a Cauchy sequence with respect to any [.} of a (., pQ)family
[ [} I e A] for -0, 1, uniformly for e B(x) and uniformly for
2 e A, then T e

4. Theorem 4. The mapping -,T is a continuous linear
mapping from ’(x, t) to ’(x).

We denote a differential operator, in R(t) such as a...
’/t;...t;:, where s=s+... +s and a..., is a constant by D
and its conjugate operater by D* i.e. D*-
t;. t,;:.

Theorem 5. If T ’,, then DT ’ and T,qz=(DT)q.
Especially if D is a product such that D- -, then from T

it follows that *T and T>,-(D*T),qt k

The theorem may be stated more generally. Now we consider
a mapping L, of (t) into itself which satisfies the following condi-
tions. (i) L maps any (,,pQ) sequence to a (,,’LQ)sequence
or maps any (, Q) family to a (’, p’L,Q) family ior p-0, 1, and
arbitrary constant p. (ii) L*()C, where L* is a conjugate
operator of ’(x, t) into itself defined by {L*T,} T, (L,@)} for

e (x), @ e (t). Concerning this mapping L, the following lemma
holds.

Lemma 4. If T , then L*T ’ and T.,ex-(L*T)z.
Theorem 6. If the topology of is introduced by bounded

sets such that every (+, pD, Qz) sequence or (+, pQ) family for
p--o, 1 is a map by D of a (, p’Q) sequence or ( +, p’Q) family
respectively and if D*T ’ then we have T e ’.

Theorem 7. If T and A is a topological space and
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the mapping ----)Q is continuous as the mapping from A into ()’(t),
then the mapping ,Tz is a continuous mapping from A to ’(x).

Lemma . If T ’), S @’(x), then (S 6(t)),T ’ and
*T[(S (t)),T} Q S)

Corollary. If T ’(x, t) then DT e’ and (DT)e=DTe.
Lemma 6. If T ’(x, t), f(t) (t), g(x) e (x), then f(t)g(x)T

’ and (f(t). g(x). T)e=g(x). T.e.
5. Hereafter we confine ourselves to some special cases. We

take Dirac’s $ and its -th derivative ) as Q, and t itself as
and D as L. We treat only the case m is 1 though quite similar
results are obtained in the case m 1 too. We take an interval
V; atb, as A. Further we write o) in the place of
and in the place of .), similarly ), and 0 for
and ’ for 0), ) for 0). We use also notations T/to
in the place of T() and for T. These designations are not so
unreasonable, since 2or example if T=f(t)S@) where f(t) ()(t) and
S(x) ’(x) then T () and To()=f/t S(x). Using these
notations the theorems in 4 are written in the following way.

Theorem 4. The mappings T-T and T ,T/t are con-
tinuous.

Theorem 5’. If T ’( then Tlt ’o- and Tlt
=-(T/t)/t- for any 0 .

Theorem 7. If T ), then the mapping toT/t is con-
tinuous.

Theorem 8. If for any t e there corresponds T e t(x) such
that the maing tT is continuous, then we can define (n+l)-
dimensional distribution by (, (x, t)} -f( Tt, (x, t) } dt where

( } means the scaler product between (x)and t(x). Moreover
T for any O, and T--T.

Theorem 9. If a parametric distribution T is -times continu-

ously differentiable with respect to t on then T which is defined in

Theorem 8 belongs to the space =o and -times parametric

derivative T is equal to T/t or (T/t) on .
Theorem 10. If T and T is constructed from T on by

Theorem 8, then T=T on .
Theorem 11. (The converse of Theorem 9). If T

then the mapping tT is -times continuously differenti-(v-p+l)

able from to (x), and -th parametric derivative equals to
T/t.



No. 5] On Multiple Distributions 357

Remark. We have assumed r---p+1 in the space tS)) in this
theorem. This condition can be weakened, but it will not be

sufficient to assume r--p -since (r_,-)/h(2_)’(V, but not (__1_);,.
6. We consider the following equation of evolution,

U(x, t)/t+I.A(t)DU(x, t)=B(x, t). ( 1 )
L. Schwartz treated the equation of this type,) where he considered
the parametric distribution and the parametric equation of evolution.
Now for example let A(t) (t) and let B(x, t) be (as a mapping
from ! o (x)) a continuous parametric distribution. D means a
differential operator in the space (x). Moreover B, A, U are all
matricielle. In such a case he discussed the parametric continuously
differentiable solution U(x, t). Here we consider the proper distribu-
tional (in Y(x, t)) equation of this type and its proper distributional
solution. (Initial condition on t=to is given in the space

Theorem 12. If a parametric continuously differentiable distribu-
tion U(x,t) satisfies parametric equation (1) under the above-men-

tioned conditions, then U(x, t) satisfies the corresponding proper dis-
tributional equation, i.e.

U(x, t)/t + l. .xU(x, t)=B(x, t).
Theorem 13. If proper equation (1) is given, and proper solu-

tion U(x,t) belongs to )(,(., then U(x) satisfies the corre-
sponding parametric equation.
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