73. A Note on Countably Paracompact Spaces

By Kiyoshi ISÉKI Kobe University (Comm. by K. KUNUGI, M.J.A., May 13, 1954)

In a recent note, the author¹⁾ proved that every normal space is countable collectionwise normal, i.e. these two concepts are equivalent. In this note, it is shown that, for normal spaces, countable paracompactness is equivalent to a property of topological importance.

Let X be a topological space. An open covering of X is called *countable*, if it is countable collection of open sets. The space X is called *countably paracompact*, if every countable open covering of X has a locally finite open refinement.

C. H. Dowker²⁾ proved that the following conditions of a normal space are equivalent:

(1) The space X is countably paracompact.

(2) Every countable open covering of X has a point finite open refinement.

(3) Every countable open covering $\alpha = \{U_i\}$ of X has an open refinement $\beta = \{V_i\}$ such that $\overline{V}_i \subset U_i \ (i=1, 2, \ldots)$.

We shall prove the following

Theorem. For a normal space X, X is countably paracompact, if and only if, every countable open covering of X has a star-finite open refinement.

Proof. Sufficiency follows immediately from the definition of countable paracompactness.

To prove the necessity, we take a countable open covering $\alpha = \{U_i\}$ of X. By C. H. Dowker's results, we can take a locally finite refinement $\beta = \{V_i\}$ of α such that $V_i \subset U_i$, and further there is a refinement $\gamma = \{W_i\}$ of β with $\overline{W_i} \subset V_i \ (i=1, 2, \ldots)$. Let $V'_n = \bigcup_{i=1}^n V_i$, $W'_n = \bigcup_{i=1}^n W_i$, then $\overline{W'_n} \subset V'_n$. By the normality of X, for each pair V'_n , W'_n , there is a sequence of open sets $V^j_n(j=1,2,\ldots)$ such that

$$\overline{W}'_n \subset V^j_n \subset \overline{V}^j_n \subset V'_n, \quad \overline{V}^j_n \subset V^{j+1}_n \ (j=1, 2, \ldots).$$

We define G_i by

$$G_{1} = V_{1}^{1}, \quad G_{2} = V_{2}^{1} \cup V_{1}^{2}, \quad G_{3} = V_{3}^{1} \cup V_{2}^{2} \cup V_{1}^{3}, \dots$$
$$\dots \quad G_{n} = \bigcup_{i+j=n+1} V_{i}^{j}, \dots$$

It is clear that each G_i is open in X, $\overline{G}_i \subset \overline{G}_{i+1} \subset V'_i$ and $\bigcup_{i=1}^{i} G_i = X$. Following O. Hanner's argument,³⁾ we construct O_i as follows: No. 5]

$$O_1 = G_1$$
, $O_2 = G_2$, $O_n = G_n - \overline{G}_{n-2}$ $(n \ge 3)$.

Then each G_i is open in X, $O_n \subset G_n$, and since $\overline{G}_n \subset G_{n+1}$, $O_n \supset G_n - G_{n-1}$. Also $O_n \subset V'_n$ (n=1, 2, ...). Let $\delta = \{O_n \cap V_i | n=1, 2, ..., i=1, 2, ..., n\}$, then δ is a star-finite and a refinement of α . Thus the proof is complete.

References

1) K. Iséki: A note on normal spaces, to be appeared in Math. Japonicae.

2) C. H. Dowker: On countably paracompact spaces, Canadian Jour. Math., 3, 219-224 (1951).

3) O. Hanner: Some theorems on absolute neighborhood retracts, Ark. Mat., 1, 389-408 (1951).