70. On the Generation of a Strongly Ergodic Semi-Group of Operators

By Isao Miyadera

Mathematical Institute, Tokyo Metropolitan University (Comm. by Z. SUETUNA, M.J.A., May 13, 1954)

1. Introduction. A fundamental problem of a semi-group of bounded linear operators $T(\xi)$, $0 < \xi < \infty$, from a complex Banach space X into itself is to characterize the infinitesimal generator which determines the structure of a semi-group of operators.

Such a problem has been discussed by E. Hille $[1]^{1}$ and K. Yosida [2] for a semi-group of operators satisfying the following conditions:

(c₁) $T(\xi)$ is strongly continuous at zero,

(c₂) $||T(\xi)|| \leq 1 + \beta \xi$ for sufficiently small ξ ,

where β is a constant. Later their results were generalized to a semi-group of operators satisfying only the condition (c₁) by R. S. Phillips [3] and the present author [4]. Further this result has been generalized to a strongly measurable semi-group of operators by W. Feller [5].

In this paper we shall deal with the above problem concerning a semi-group of operators which is strongly Abel (or Cesàro) ergodic to the identity at zero.²⁾ We sketch here our results. The details will appear in the Tôhoku Mathematical Journal.

2. Semi-group of operators strongly Abel ergodic at zero Let $\{T(\xi); 0 < \xi < \infty\}$ be a semi-group of operators satisfying the following conditions:

(a) For each $\xi > 0$, $T(\xi)$ is a bounded linear operator from a complex Banach space X into itself and

$$T(\xi + \eta) = T(\xi) \cdot T(\eta) = T(\eta) \cdot T(\xi).$$

(b) $T(\xi)$ is strongly measurable in $(0, \infty)$.

We may further assume the following condition without loss of generality:

¹⁾ Numbers in brackets refer to the references at the end of this paper.

²⁾ After this paper was written up, the author found the abstract of Phillips' paper [6], in which he writes that the necessary and sufficient conditions that a closed linear operator be the c.i.g. (the smallest closed extension of the infinitesimal generator) of a semi-group of operators which is strongly Abel (or Cesàro) ergodic (summable) to the identity at zero are obtained, but the detail is not obvious for the present author.

I. MIYADERA

[Vol. 30,

(c) $||T(\xi)||$ is bounded at $\xi = \infty$.

Definition 1. $T(\xi)$ is said to be *strongly Abel ergodic* to the identity at zero if it satisfies the following conditions:

$$\int_{0}^{1} || T(\xi) || d\xi < \infty,$$
$$\lim_{\lambda \to \infty} \lambda \int_{0}^{\infty} e^{-\lambda \xi} T(\xi) x d\xi = x, \quad x \in X.$$

Definition 2. The set Σ defined by

$$\Sigma = \left\{x ; \lim_{\xi \to 0} \frac{1}{\xi} \int_{0}^{\xi} T(\eta) x \, d\eta = x \right\}$$

is said to be (C, 1)-continuity set of $\{T(\xi); 0 < \xi < \infty\}$.

Definition 3. We define the operator A by

$$Ax = \lim_{h \to 0} \frac{1}{h} [T(h) - I]x$$

whenever the limit on the right hand side exists and belongs to Σ . A is said to be *the infinitesimal generator* of $\{T(\xi); 0 < \xi < \infty\}$ and the set of elements x, for which Ax exists, will be denoted by D(A).

We obtain first the following

Theorem 1. Let $\{T(\xi); 0 < \xi < \infty\}$ be a semi-group of operators satisfying the conditions (a) – (c) and strongly Abel ergodic to the identity at zero. Then we have

(i) for each λ such that $R(\lambda) > 0$, where $R(\lambda)$ denotes the real part of λ , there exists a bounded linear operator $R(\lambda; A)$ from X into Σ satisfying the following conditions:

$$(\lambda - A)R(\lambda; A)x = x, \quad x \in \Sigma,$$

 $R(\lambda; A)(\lambda - A)x = x, \quad x \in D(A),$

(ii) D(A) is a dense linear subset in X,

(iii) there exists a finite positive constant M such that

$$|\lambda R(\lambda; A)|| \leq M, \quad \lambda \geq 1,$$

(iv) there exists a non-negative function $f(\xi, x)$ defined on the product space <0, $\infty > \times X$ satisfying the properties (a')-(d'):

- (a') for each $x \in X$, $f(\xi, x)$ is a measurable function of ξ ,
- (b') $f(\xi) = \sup_{x \in X} \frac{f(\xi, x)}{||x||}$ is integrable on any finite interval $[0, \epsilon]$

and bounded measurable on any infinite interval [ϵ , ∞], $\epsilon > 0$,

- (c') $\sup_{x \in X} \frac{f(\xi, R(1; A)x)}{||x||}$ is bounded on $(0, \infty)$,
- (d') for all $x \in X$, we have

 $||R^{(k)}(\lambda; A)x|| \leq (-1)^k F^{(k)}(\lambda, x), \ k=1, 2, \ldots,$

No. 5] On the Generation of a Strongly Ergodic Semi-Group of Operators

where $F(\lambda, x)$ is defined by

$$F(\lambda, x) = \int_{0}^{\infty} e^{-\lambda\xi} f(\xi, x) d\xi, \quad \lambda > 0,$$

and $R^{(k)}(\lambda; A)$, $F^{(k)}(\lambda, x)$ denote the k-th derivative of $R(\lambda; A)$, $F(\lambda, x)$ respectively,

 (\mathbf{v}) if we define the new norm by

$$N(x) = \sup_{\varepsilon > 0} \left\| \frac{1}{\xi} \int_{0}^{\varepsilon} T(\eta) x \, d\eta \right\|, \quad x \in \Sigma,$$

then Σ is a Banach space with N(x)-norm and D(A) is dense in Σ with N(x)-norm, and furthermore

$$N(x) = \sup_{k \ge 1, \ \lambda > 0} \left\| \frac{1}{k} \sum_{i=1}^{k} [\lambda R(\lambda; A)]^{i} x \right\|, \quad x \in \Sigma.$$

Next we state the converse of Theorem 1.

Theorem 2. Let Σ be a linear subset in X and A be a linear operator on Σ into itself satisfying the conditions (i)-(iv), where D(A) denotes the domain of A. We assume further that N(x) defined by

$$N(x) = \sup_{k \ge 1, \ \lambda > 0} \left\| \frac{1}{k} \sum_{i=1}^{k} [\lambda R(\lambda; A)]^{i} x \right\|, \quad x \in \Sigma,$$

is finitely valued and Σ is a Banach space with N(x)-norm and that D(A) is dense in Σ with N(x)-norm.

Then there exists a semi-group of operators $\{T(\xi); 0 < \xi < \infty\}$ such that $T(\xi)$ satisfies the conditions (a)-(c), is strongly Abel ergodic to the identity at zero and A is its infinitesimal generator, and Σ is the (C, 1)-continuity set of $\{T(\xi); 0 < \xi < \infty\}$ and

$$N(x) = \sup_{\xi>0} \left\| \frac{1}{\xi} \int_{0}^{\xi} T(\eta) x \, d\eta \right\|, \quad x \in \Sigma.$$

Theorem 2 is proved by the idea due to K. Yosida and W. Feller.

3. Semi-group of operators strongly (C, 1)-ergodic at zero

Definition 4. $T(\xi)$ is said to be strongly (C, 1)-ergodic to the identity at zero if it satisfies the followings:

$$\int\limits_{0}^{1} || T(\xi) || d\xi < \infty$$
, $\lim_{x o 0} rac{1}{\xi} \int\limits_{0}^{\xi} T(\eta) x \, d\eta = x, \quad x \in X.$

In this case the (C, 1)-continuity set of $\{T(\xi); 0 < \xi < \infty\}$ coincides with the whole space X, so that our definition of the infinitesimal generator (cf. Def. 3) becomes the ordinary one, further N(x)-norm defined by

$$N(x) = \sup_{\varepsilon > 0} \left\| \left| \frac{1}{\varepsilon} \int_{0}^{\varepsilon} T(\eta) x \, d\eta \right| \right|, \quad x \in X$$

337

In fact, by the conditions (a) - (c) and

there exists a finite positive constant M such that

for all $x \in X$, while

$$||x|| \leq \sup_{{\mathfrak r}>0} \left\| rac{1}{{\mathcal F}} \int_0^{{\mathfrak r}} T(\eta) \, x \, d\eta
ight\|,$$

so that we have

$$(*) \qquad ||x|| \leq \sup_{\xi > v} \left| \left| \frac{1}{\xi} \int_{v}^{\xi} T(\eta) x \, d\eta \right| \right| = N(x) \leq M ||x||.$$

We denote the infinitesimal generator of $\{T(\xi); 0 < \xi < \infty\}$ by A and the domain of A by D(A).

Theorem 3. Let $\{T(\xi); 0 < \xi < \infty\}$ be a semi-group of operators satisfying the assumptions (a)-(c) and strongly (C, 1)-ergodic to the identity at zero. Then

(i') A is a closed linear operator and its spectrum is located in $R(\lambda) \leq 0$,

(ii') D(A) is a dense linear subset in X,

(iii') there exists a finite positive constant M such that

$$\sup_{k\geq 1,\,\lambda>0}\left\|\frac{1}{k}\sum_{i=1}^{k}[\lambda R(\lambda\,;\,A)]^{i}x\right\|\leq M||x||$$

for all $x \in X$,

(iv') the condition (iv) is satisfied.

Proof. Since
$$\frac{d}{d\xi}T(\xi)x=T(\xi)Ax$$
 for $x \in D(A)$, we have

$$\frac{1}{\xi} [T(\xi) - I] x = \frac{1}{\xi} \int_{0}^{\xi} T(\eta) A x \, d\eta, \quad x \in D(A).$$

Suppose that $\{x_n\}$ is a sequence in D(A) and that $x_n \to x$, $Ax_n \to y$. The above formula holds for $x=x_n$ so that

$$\frac{1}{\xi} [T(\xi)x_n - x_n] = \frac{1}{\xi} \int_0^{\xi} T(\eta) Ax_n \, d\eta.$$

Letting $n \rightarrow \infty$, one obtains

$$\frac{1}{\xi} [T(\xi)x - x] = \frac{1}{\xi} \int_{0}^{\xi} T(\eta)y \, d\eta$$

Because of the strong (C, 1)-ergodicity, the right hand side tends to y when $\xi \rightarrow 0$. Hence Ax exists and equals to y, so that A is a closed linear operator.

[Vol. 30,

No. 5] On the Generation of a Strongly Ergodic Semi-Group of Operators

We note next that the (C, 1)-ergodicity implies the Abel ergodicity and $\Sigma = X$, and then we have the conclusions (i') - (iv') from Theorem 1 and the inequality (*).

The converse of this theorem is stated as follows.

Theorem 4. Let A be a closed linear operator on X into itself satisfying the conditions (i') - (iv'). Then there exists a semi-group of operators $\{T(\xi); 0 < \xi < \infty\}$ such that $T(\xi)$ satisfies the conditions (a) -(c), is strongly (C, 1)-ergodic to the identity at zero and that A is its infinitesimal generator.

Proof. If we denote the resolvent of A by $R(\lambda; A)$ for each λ such that $R(\lambda) > 0$, we have the first resolvent equation by the assumption (i'). In virtue of the assumption (iii') we have $||\lambda R(\lambda; A)|| \leq M$, so that we obtain

$$\lim_{\lambda \to \infty} || \lambda R(\lambda; A) x - x || = 0$$

for all $x \in X$. From this we have

$$\|\|x\| \leq \sup_{k \geq 1, \ \lambda > 0} \left\| \frac{1}{k} \sum_{i=1}^{k} [\lambda R(\lambda; A)]^{i} x \right\| \leq M \|\|x\|$$

for all $x \in X$, and hence if we take the whole space X as Σ , our assumptions imply the assumptions of Theorem 2. Thus there exists a semi-group of operators $\{T(\xi); 0 < \xi < \infty\}$ such that $T(\xi)$ satisfies the conditions (a)-(c) and is strongly Abel ergodic to the identity at zero, and such that the whole space X is the (C, 1)-continuity set of $\{T(\xi); 0 < \xi < \infty\}$ and A is its infinitesimal generator. Hence it follows that $T(\xi)$ is strongly (C, 1)-ergodic to the identity at zero. This completes the proof.

From Theorems 3 and 4 we get the following corollary.

Corollary. A necessary and sufficient condition that a closed linear operator A becomes the infinitesimal generator of a semi-group of operators $\{T(\xi); 0 < \xi < \infty\}$ satisfying the conditions (a), (c) and (c₁), is that the conditions (i') and (ii') are satisfied, and that there exists a finite positive constant M such that

$$||[\lambda R(\lambda; A)]^k|| \leq M, \quad \lambda > 0, \quad k = 1, 2, \ldots$$

To prove the necessity it is sufficient to note that there exists a finite positive constant M such that $||T(\xi)|| \leq M$ for $0 < \xi < \infty$ and the strong continuity implies the strong (C, 1)-ergodicity.

If we put $f(\xi, x) = M ||x||$, then the conditions imply the assumptions of Theorem 4, while $||T(\xi)|| \leq M$ follows from the condition $||[\lambda R(\lambda; A)]^{k}|| \leq M$. Thus the sufficiency of the conditions is established by use of Theorem 4.

I. MIYADERA

References

[1] E. Hille: Functional analysis and semi-groups, Amer. Math. Soc. Coll. Publ. New York (1948).

[2] K. Yosida: On the differentiability and the representation of one-parameter semi-group of linear operators, Journ. Math. Soc. Japan, 1, 15-21 (1948).

[3] R. S. Phillips: Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc., **74**, 199–221 (1953).

[4] I. Miyadera: Generation of a strongly continuous semi-group operators, Tôhoku Math. Journ., **4**, 109-114 (1952).

[5] W. Feller: On the generation of unbounded semi-groups of bounded linear operators, Ann. Math., **58**, 166-174 (1953).

[6] R.S. Phillips: An inversion formula for Laplace transforms and semi-groups of linear operators, Bull. Amer. Math. Soc., **59**, 81 (1953).