93. Note on Linear Topological Spaces

By Tsuyoshi Andô

(Comm. by K. KUNUGI, M.J.A., June 12, 1954)

§1. The purpose of this note is to give a generalization of Y. Kawada's theorem to convex linear topological spaces and some related remarks. As we treat only separative convex linear topological spaces, we shall call them merely *convex spaces*.

In the sequel, the word "Isomorphism" means always algebraic isomorphism together with homeomorphism, unless the contrary is mentioned. For two convex spaces E and F, L(E, F) is the space of all continuous linear mappings of E to F. For any subset A of E and B of F, (A | B) denotes the set; $\{u; u \in L(E, F) \ u(A) \subseteq B\}$. For a family \mathfrak{S} of bounded subsets of E such that for any $A_1 \in \mathfrak{S}$ and $A_2 \in \mathfrak{S}$, there exists an $A_3 \in \mathfrak{S}$ with $A_1 \smile A_2 \subseteq A_3$ and $\bigcap_{A \in \mathfrak{S}} A = E$, we can define a convex linear topology in L(E, F) whose basis of neighborhood of the origin consists of all (A | V) where $A \in \mathfrak{S}$ and Vis a neighborhood of o in F. This topology is called \mathfrak{S} -topology. We write $\langle x, x' \rangle$ instead of x'(x) $(x \in E, x' \in E')$ where E' denotes the conjugate space of E. A neighborhood of the origin is called an o-neighborhood.

§2. Theorem 1. (Kawada¹) Let E and F be two convex spaces. If L(E, E) and L(F, F) are algebraically (ring) isomorphic, then there exists an algebraic isomorphic mapping φ of E onto F and $\tilde{\varphi}$ of E' onto F' such that $\langle x, x' \rangle = \langle \varphi(x), \tilde{\varphi}(x') \rangle$ $(x \in E, x' \in E')$.

Proof. We sketch Kawada's proof.

(a) Any minimal left ideal \mathfrak{A} of L(E, E) is algebraically isomorphic to E in the manner $E \ni x \longleftrightarrow u_x \in \mathfrak{A}$ implies $v(x) \longleftrightarrow v \cdot u_x$ ($v \in L(E, E)$).

In fact, there exists an element x_0 of E and $u_0 \in \mathfrak{A}$ with $u_0(x_0) \neq 0$. We can easily see that the linear mapping $u \to u(x_0)$ maps \mathfrak{A} onto E. The set $\{u; u \in \mathfrak{A} \ u(x_0)=0\}$ is a left ideal contained in \mathfrak{A} and not identical to it, so a zero ideal, because of the minimalness of \mathfrak{A} . Thus this mapping is an expected algebraic isomorphism. Conversely, the set $\{u_y; u_y(x)=\langle x, x_0' \rangle y, y \in E\}$ for non-zero $x_0' \in E'$ is a minimal left ideal.

(b) Let Φ be the given algebraic isomorphic mapping of L(E, E) onto L(F, F). Then

$$E \ni x \longleftrightarrow u_x \in \mathfrak{A} \longleftrightarrow \tilde{u}_{\widetilde{x}} \in \widetilde{\mathfrak{A}} \longleftrightarrow \tilde{x} \in F$$
$$v(x) \longleftrightarrow v \cdot u_x \longleftrightarrow \mathscr{O}(v) \tilde{u}_{\widetilde{x}} \longleftrightarrow \mathscr{O}(v) [\widetilde{x}]$$

and

¹⁾ Y. Kawada: "Ueber den Operatorenring Banachscher Räume", Proc. Imp. Acad., **19**, 616-621 (1943).

where \mathfrak{A} and $\mathfrak{\widetilde{A}}$ are some corresponding minimal left ideals. Putting $\varphi(x) = \tilde{x}$, we get $\varphi(v(x)) = \Phi(v) [\varphi(x)]$.

(c) For any $x' \in E'$, we put $u(x) = \langle x, x' \rangle x_0$ where x_0 is a fixed non-zero element of E. Then $\mathcal{P}(u)[z] = \langle \varphi^{-1}(z), x' \rangle \varphi(x_0) \ (z \in F)$. $\langle \varphi^{-1}(z), x' \rangle$ is a continuous linear functional on F, so may be written as a form $\langle z, \tilde{\varphi}(x') \rangle$ for some $\tilde{\varphi}(x') \in F'$. $\tilde{\varphi}$ gives a desired algebraic isomorphism. Q.E.D.

Corollary. (Mackey²⁾) If E and F are both relatively strong (or weak) in the sense of Mackey, then algebraic isomorphism of L(E, E), and L(F, F) implies isomorphism of E and F.

When we consider topologies of E and F, we need the following lemma.

Lemma: If (C|D) is a \mathfrak{S} -o-neighborhood of L(E, F) where D is a symmetric convex subset of F and C is neither empty nor reduced to the origin of E, then D is an o-neighborhood of F.

Proof. By definition, there exists a symmetric convex closed bounded subset B of E and an *o*-neighborhood V of F such that $(B | V) \subseteq (C | D)$. For some non-zero real number α , C is not contained in αB . Assume that αV be not contained in D. Then we can find x_0 , \tilde{y}_0 such that

 $C
i x_0 \quad ext{and} \quad x_0 \in lpha B \ lpha V
i ilde y_0 \quad ext{and} \quad ilde y_0 \in D.$

Since aB is symmetric, convex and closed, an application of Hahn-Banach theorem shows that there exists an $x_0' \in E'$ with the property,

$$\langle x_0, x_0'
angle > 1 \quad ext{and} \quad |\langle x, x_0'
angle| \leq 1 \ (x \in aB).$$

The continuous linear mapping $u(x) = \langle x, x_0' \rangle \tilde{y}_0$, is contained in $(aB \mid aV) = (B \mid V)$, but not in $(C \mid D)$. This contradicts the hypothesis.

Theorem 2. Suppose that the topologies of L(E, E) and L(F, F)are $\mathfrak{S}_{E^{-}}$ and $\mathfrak{S}_{F^{-}}$ topologies respectively. If L(E, E) and L(F, F)are isomorphic, then E and F are isomorphic.

Proof: Let V be any o-neighborhood of E. From the proof of theorem 1, $u \in (\{x_0\}|V)$ if and only if $\mathcal{P}(u) \in (\{\varphi(x_0)\}|\varphi(V))$. Since $(\{x_0\}|V)$ is an o-neighborhood of L(E, E) with respect to the given topology, $(\{\varphi(x_0)\}|\varphi(V))$ is an o-neighborhood of L(F, F). By the lemma, $\varphi(V)$ is an o-neighborhood of F.

Remark. In theorem 2, the assumption of "homeomorphism" can not be omitted. For example, if E is a normed space with its norm topology and F=E with its weak topology, then L(E, E) and L(F, F) are algebraically isomorphic but in general weak and norm topologies do not coincide.

and

²⁾ G.W. Mackey: "On convex linear topological spaces", Trans. Amer. Math. Soc., **60**, 519-537 (1946).