177. A Characterization of Hilbert Space

By Shouro KASAHARA

Kobe University

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

It is our purpose in this note to prove the following

THEOREM. A Banach space E is unitary if and only if it satisfies the condition.

(*) There is assigned to E a positive number a not greater than 1/2, and for any x, y in E, there exists at least a λ , $\alpha \leq \lambda \leq 1-\alpha$, which depends on x and y, such that

 $\lambda ||x||^{2} + (1-\lambda) ||y||^{2} \ge \lambda (1-\lambda) ||x-y||^{2} + ||\lambda x + (1-\lambda) y||^{2},$

where $\parallel \parallel \parallel$ is the norm.

Whenever we speak of a Banach space we shall mean a Banach space over real field R.

We shall only prove the "if" part of the theorem since the "only if" part is clear. Using Kakutani's result,¹⁾ it is sufficient to show that for any closed linear subspace M of E, there exists an extension of the identity transformation of M which is linear continuous and has norm 1. From the fact that the continuous linear map of a linear subspace N of a Banach space into another Banach space F can be extended to a continuous linear map of the closure \overline{N} into F without changing the norm, and by virtue of Zorn's lemma, our problem can be simplified in the form: to prove the following statement.

Let E be a Banach space satisfying the condition (*), and M a closed hyperplane. Then the identity transformation I of M can be extended to a continuous linear transformation of E onto M whose norm is 1.

For this purpose, we shall need the lemmata below.

LEMMA 1. Let E be a Banach space satisfying the condition (*). If $x, y \in E$ are such that:

 $\max[||x||, ||y||] < ||x-y||$

then there is a λ , $0 < \lambda \leq 1-\alpha$, which insures

 $|| \lambda x + (1 - \lambda)y || < \min[|| x ||, || y ||].$

Proof. We may suppose ||y|| is not greater than ||x||. In 2-dimensional Euclidean space, we construct a triangle with verteces

¹⁾ S. Kakutani: Some characterizations of Euclidean space, Japanese Jour. Math., **16**, 93-97 (1939).

O, X and Y such that

|X-O| = ||x||, |Y-O| = ||y||, |X-Y| = ||x-y||.

For any λ , $0 < \lambda < 1$, let us denote by $Z(\lambda)$ a point on the segment \overline{XY} for which $|Z(\lambda) - Y| = \lambda |X - Y|$.

Now by the assumption, |X-O| is smaller than |X-Y| and not smaller than |Y-O|, so there is a λ_0 , $0 < \lambda_0 < 1$, such that $|Z(\lambda)-O| < |Y-O|$ whenever $0 < \lambda < \lambda_0$.

On the other hand, we have from brief calculations

 $|Z(\lambda) - O|^2 = \lambda ||x||^2 + (1 - \lambda) ||y||^2 - \lambda(1 - \lambda) ||x - y||^2;$

and the condition (*) insures the existence of a λ_1 , $\alpha \leq \lambda_1 \leq 1-\alpha$, such that

 $\lambda_1 \, || \, x \, ||^2 + (1 - \lambda_1) \, || \, y \, ||^2 - \lambda_1 (1 - \lambda_1) \, || \, x - y \, ||^2 \ge || \, \lambda_1 x + (1 - \lambda_1) \, y \, ||^2.$

We shall consider the case where λ_1 gives the inequality. Now if the inequality holds true for all λ with $0 < \lambda < 1-\alpha$, then the lemma is clear, because we can choose a λ smaller than λ_0 , and hence $||\lambda x + (1-\lambda)y|| < ||y||$ for this λ . Otherwise, there is a λ , $0 < \lambda \leq 1-\alpha$, such that

 $(=) \qquad \lambda ||x||^{2} + (1-\lambda) ||y||^{2} - \lambda(1-\lambda) ||x-y||^{2} = ||\lambda x + (1-\lambda)y||^{2}$

since the norm is continuous.

Thus it will suffice to prove the lemma under following condition on the norm.

(**) For any $x, y \in E$, there exists a $\lambda, 0 < \lambda \leq 1-a$, such that the equality (=) holds.

Therefore, we may assume that the equality (=) holds for λ_1 ; if λ_1 is not smaller than λ_0 , we consider the triangle $XYZ(\lambda_1)$. Then we can take a λ_2 , $0 < \lambda_2 \leq (1-\alpha)^2$, for which (=) is valid in view of condition (**). Further, if $\lambda_2 \geq \lambda_0$, we consider the triangle $XYZ(\lambda_2)$, and so on. Since $(1-\alpha)^n$ tends to zero as $n \to \infty$, we have $\lambda_n < \lambda_0$ for sufficiently large *n*, proving the lemma.

LEMMA 2. A closed convex set C in a Banach space satisfying the condition (*) contains a unique element of smallest norm.

Proof. Let $\rho = \inf_{x \in C} ||x||$ and choose $x_m \in C$ that may satisfy $||x_n|| \downarrow \rho$. Then for any $\varepsilon > 0$, there is an integer N such that

$$||x_n|| < \rho + \varepsilon, \quad ||x_m|| < \rho + \varepsilon,$$

for any m, n > N.

The condition (*) insures the existence of a λ , $\alpha \leq \lambda \leq 1-\alpha$, such that

$$egin{aligned} ||x_n-x_m||^2 &\leq -rac{1}{1-\lambda}\,||x_n||^2 + rac{1}{\lambda}\,||x_m||^2 \ &-rac{1}{\lambda(1-\lambda)}\,||\,\lambda x_n + (1-\lambda)x_m\,||^2. \end{aligned}$$

No. 9]

S. KASAHARA

Now since C is convex, $\lambda x_n + (1-\lambda)x_m$ is in C, so that

$$|| extsf{x}_n - extsf{x}_m ||^2 < rac{(
ho + arepsilon)^2}{\lambda(1 - \lambda)} - rac{
ho^2}{\lambda(1 - \lambda)} < rac{(2
ho + arepsilon)arepsilon}{lpha^2}$$

Let $x_0 = \lim_{n \to \infty} x_n$, then x_0 is in *C* since *C* is closed, and it follows from the continuity of the norm that $||x_0|| = \rho$. It is an immediate consequence of Lemma 1 and the condition (*) that the element x_0 is unique.

We shall now proceed to prove the above-mentioned statement. Let x_0 be an element of E which does not belong to M; then the set $\{y-x_0 \mid y \in M\}$ is clearly convex and closed, so by Lemma 2 there is a unique element y_0 such that $||y_0-x_0|| \leq ||y-x_0||$ for all $y \in M$.

It is easy to see that for all $y \in M$, we have

$$||y-y_0|| \leq ||y-x_0||.$$

In fact, if $||y-y_0||$ is greater than $||y-x_0||$ for some $y \in M$, then in virtue of Lemma 1 there exists a λ , $0 < \lambda < 1-\alpha$, such that

$$|| \lambda y + (1 - \lambda) y_0 - x_0 || < || y_0 - x_0 ||$$

which is a contradiction since $\lambda y + (1-\lambda)y_0$ is in M.

Now we define $I^*(x) = I(y) + \lambda y_0 = y + \lambda y_0$ for any $x = y + \lambda x_0$, $y \in M$, $\lambda \in R$.

Then it is clear that I^* is linear and an extension of I to $M+Rx_0$, and hence it remains only to prove the continuity of I^* and that the norm is 1. For that matter the relation

$$||y + \lambda y_0|| = |\lambda| \cdot ||\lambda^{-1}y + y_0||$$

holds for $\lambda \neq 0$.

On the other hand, $||\lambda^{-1}y+y_0|| \leq ||-\lambda^{-1}y-x_0||$, and so $||y+\lambda y_0|| \leq ||y+\lambda x_0||$, which guarantees the continuity of I^* and shows the norm is 1. Thus we have reached the desired conclusion.

> Additions and Corrections to Shouro Kasahara: "A Note on *f*-completeness"

(Proc. Japan Acad., 30, No. 7, 572–575 (1954))

Pages 572-573, delete "Proposition 2".

Page 574, delete "Proposition 6".

Page 574, line 19 from foot, for "mapping of W, we have $p(I^*(x)) \leq p(x)$ for any $p \in (p_a)$ and $x \in E$." read "mapping of W, concerning to $p \in (p_a)$, we have $p^*(I(x)) \leq p(x)$ for any $x \in E$.".

Page 574, lines 26–29, delete "Now, since \cdots inequality (*) for u^* ."

Pape 574, line 10 from foot, for "for any $p \in (p_a)$ there is" read "there exist a $p \in (p_a)$ and".

Page 574, line 2 from foot, for "same a" read "same p and a".