177. A Characterization of Hilbert Space

By Shouro Kasahara

Kobe University
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1954)
It is our purpose in this note to prove the following
Theorem. A Banach space E is unitary if and only if it satisfies the condition.
(*) There is assigned to E a positive number a not greater than $1 / 2$, and for any x, y in E, there exists at least $a \lambda, \alpha \leqq \lambda \leqq 1-\alpha$, which depends on x and y, such that

$$
\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2} \geqq \lambda(1-\lambda)\|x-y\|^{2}+\|\lambda x+(1-\lambda) y\|^{2},
$$

where \|| || is the norm.
Whenever we speak of a Banach space we shall mean a Banach space over real field R.

We shall only prove the "if" part of the theorem since the "only if" part is clear. Using Kakutani's result, ${ }^{1)}$ it is sufficient to show that for any closed linear subspace M of E, there exists an extension of the identity transformation of M which is linear continuous and has norm 1. From the fact that the continuous linear map of a linear subspace N of a Banach space into another Banach space F can be extended to a continuous linear map of the closure \bar{N} into F without changing the norm, and by virtue of Zorn's lemma, our problem can be simplified in the form: to prove the following statement.

Let E be a Banach space satisfying the condition (*), and M a closed hyperplane. Then the identity transformation I of M can be extended to a continuous linear transformation of E onto M whose norm is 1.

For this purpose, we shall need the lemmata below.
Lemma 1. Let E be a Banach space satisfying the condition (*). If $x, y \in E$ are such that:

$$
\max [\|x\|,\|y\|]<\|x-y\|
$$

then there is $a \lambda, 0<\lambda \leqq 1-\alpha$, which insures

$$
\|\lambda x+(1-\lambda) y\|<\min [\|x\|,\|y\|]
$$

Proof. We may suppose $\|y\|$ is not greater than $\|x\|$. In 2dimensional Euclidean space, we constract a triangle with verteces

[^0]O, X and Y such that
$$
|X-O|=\|x\|,|Y-O|=\|y\|,|X-Y|=\|x-y\| .
$$

For any $\lambda, 0<\lambda<1$, let us denote by $Z(\lambda)$ a point on the segment $\bar{X} Y$ for which $|Z(\lambda)-Y|=\lambda|X-Y|$.

Now by the assumption, $|X-O|$ is smaller than $|X-Y|$ and not smaller than $|Y-O|$, so there is a $\lambda_{0}, 0<\lambda_{0}<1$, such that $|Z(\lambda)-O|<|Y-O|$ whenever $0<\lambda<\lambda_{0}$.

On the other hand, we have from brief calculations

$$
|Z(\lambda)-O|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} ;
$$

and the condition (*) insures the existence of a $\lambda_{1}, \alpha \leqq \lambda_{1} \leqq 1-\alpha$, such that

$$
\lambda_{1}\|x\|^{2}+\left(1-\lambda_{1}\right)\|y\|^{2}-\lambda_{1}\left(1-\lambda_{1}\right)\|x-y\|^{2} \geqq\left\|\lambda_{1} x+\left(1-\lambda_{1}\right) y\right\|^{2} .
$$

We shall consider the case where λ_{1} gives the inequality. Now if the inequality holds true for all λ with $0<\lambda<1-\alpha$, then the lemma is clear, because we can choose a λ smaller than λ_{0}, and hence $\|\lambda x+(1-\lambda) y\|<\|y\|$ for this λ. Otherwise, there is a λ, $0<\lambda \leqq 1-\alpha$, such that

$$
(=) \quad \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}=\|\lambda x+(1-\lambda) y\|^{2}
$$

since the norm is continuous.
Thus it will suffice to prove the lemma under following condition on the norm.
(**) For any $x, y \in E$, there exists a $\lambda, 0<\lambda \leqq 1-\alpha$, such that the equality ($=$) holds.

Therefore, we may assume that the equality $(=)$ holds for λ_{1}; if λ_{1} is not smaller than λ_{0}, we consider the triangle $X Y Z\left(\lambda_{1}\right)$. Then we can take a $\lambda_{2}, 0<\lambda_{2} \leqq(1-\alpha)^{2}$, for which (=) is valid in view of condition (**). Further, if $\lambda_{2} \geqq \lambda_{0}$, we consider the triangle $X Y Z\left(\lambda_{2}\right)$, and so on. Since $(1-\alpha)^{n}$ tends to zero as $n \rightarrow \infty$, we have $\lambda_{n}<\lambda_{0}$ for sufficiently large n, proving the lemma.

LEMMA 2. A closed convex set C in a Banach space satisfying the condition (*) contains a unique element of smallest norm.

Proof. Let $\rho=\inf _{x \in C}\|x\|$ and choose $x_{m} \in C$ that may satisfy $\left\|x_{n}\right\| \downarrow \rho$. Then for any $\varepsilon>0$, there is an integer N such that

$$
\left\|x_{n}\right\|<\rho+\varepsilon, \quad\left\|x_{m}\right\|<\rho+\varepsilon
$$

for any $m, n>N$.
The condition (*) insures the existence of a $\lambda, \alpha \leqq \lambda \leqq 1-\alpha$, such that

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\|^{2} \leqq \frac{1}{1-\lambda}\left\|x_{n}\right\|^{2} & +\frac{1}{\lambda}\left\|x_{m}\right\|^{2} \\
& -\frac{1}{\lambda(1-\lambda)}\left\|\lambda x_{n}+(1-\lambda) x_{m}\right\|^{2}
\end{aligned}
$$

Now since C is convex, $\lambda x_{n}+(1-\lambda) x_{m}$ is in C, so that

$$
\left\|x_{n}-x_{m}\right\|^{2}<\frac{(\rho+\varepsilon)^{2}}{\lambda(1-\lambda)}-\frac{\rho^{2}}{\lambda(1-\lambda)}<\frac{(2 \rho+\varepsilon) \varepsilon}{\alpha^{2}} .
$$

Let $x_{0}=\lim _{n \rightarrow \infty} x_{n}$, then x_{0} is in C since C is closed, and it follows from the continuity of the norm that $\left\|x_{0}\right\|=\rho$. It is an immediate consequence of Lemma 1 and the condition (*) that the element x_{0} is unique.

We shall now proceed to prove the above-mentioned statement. Let x_{0} be an element of E which does not belong to M; then the set $\left\{y-x_{0} \mid y \in M\right\}$ is clearly convex and closed, so by Lemma 2 there is a unique element y_{0} such that $\left\|y_{0}-x_{0}\right\| \leqq\left\|y-x_{0}\right\|$ for all $y \in M$.

It is easy to see that for all $y \in M$, we have

$$
\left\|y-y_{0}\right\| \leqq\left\|y-x_{0}\right\|
$$

In fact, if $\left\|y-y_{0}\right\|$ is greater than $\left\|y-x_{0}\right\|$ for some $y \in M$, then in virtue of Lemma 1 there exists a $\lambda, 0<\lambda<1-\alpha$, such that

$$
\left\|\lambda y+(1-\lambda) y_{0}-x_{0}\right\|<\left\|y_{0}-x_{0}\right\|
$$

which is a contradiction since $\lambda y+(1-\lambda) y_{0}$ is in M.
Now we define $\quad I^{*}(x)=I(y)+\lambda y_{0}=y+\lambda y_{0}$
for any $x=y+\lambda x_{0}, y \in M, \lambda \in R$.
Then it is clear that I^{*} is linear and an extension of I to $M+R x_{0}$, and hence it remains only to prove the continuity of I^{*} and that the norm is 1 . For that matter the relation

$$
\left\|y+\lambda y_{0}\right\|=|\lambda| \cdot\left\|\lambda^{-1} y+y_{0}\right\|
$$

holds for $\lambda \neq 0$.
On the other hand, $\left\|\lambda^{-1} y+y_{0}\right\| \leqq\left\|-\lambda^{-1} y-x_{0}\right\|$,
and so $\quad\left\|y+\lambda y_{0}\right\| \leqq\left\|y+\lambda x_{0}\right\|$,
which guarantees the continuity of I^{*} and shows the norm is 1 . Thus we have reached the desired conclusion.

> Additions and Corrections to Shouro Kasahara:
> " A Note on f-completeness""
> (Proc. Japan Acad., 30, No. 7, $572-575$ (1954))

Pages 572-573, delete " Proposition 2".
Page 574, delete "Proposition 6".
Page 574, line 19 from foot, for " mapping of W, we have $p(I *(x)) \leqq p(x)$ for any $p \in\left(p_{\alpha}\right)$ and $x \in E$." read " mapping of W, concerning to $p \in\left(p_{\alpha}\right)$, we have $p *(I(x))$ $\leqq p(x)$ for any $x \in E$. .'.

Page 574, lines $26-29$, delete "Now, since...inequality ($*$) for u^{*}.".
Pape 574, line 10 from foot, for "for any $p \in\left(p_{\alpha}\right)$ there is" read "there exist a $p \in\left(p_{\alpha}\right)$ and ".

Page 574, line 2 from foot, for "same a " read " same p and a ".

[^0]: 1) S. Kakutani: Some characterizations of Euclidean space, Japanese Jour. Math., 16, 93-97 (1939).
