No. 9]

165. Theorie der 2-Cohomologiegruppen in diskret bewerteten perfekten Körpern¹⁾

Von Mikao MORIYA

Institut der Mathematik, Okayama Universität, Japan (Comm. by Z. Suetuna, M.J.A., Nov. 12, 1954)

Im folgenden bezeichnet k durchweg einen diskret bewerteten perfekten (kommutativen) Körper und K eine endlich-separable Erweiterung über k; die Hauptordnung von k bzw. K sei mit \mathfrak{D} bzw. \mathfrak{D} bezeichnet. Ferner sei \overline{K} eine endlich-separable Erweiterung über K mit $\overline{\mathfrak{D}}$ als Hauptordnung; $\overline{\mathfrak{P}}$ sei das Primideal aus $\overline{\mathfrak{D}}$. Dann ist die $Differente \mathfrak{D}(K/k)$ von K/k bekanntlich kein Nullideal, weil K über k separabel ist; der Exponent von $\mathfrak{D}(K/k)$ in bezug auf $\overline{\mathfrak{P}}$ heisse der $\overline{\mathfrak{P}}$ -Exponent der Differente von K/k.

Nun versteht man unter einem normalen 2-Cozyklus f von \mathbb{O}/\mathbb{O} über $\overline{\mathbb{O}}$ eine bilineare Abbildung des Ringes \mathbb{O} in $\overline{\mathbb{O}}$ mit folgenden Eigenschaften:

1) Für beliebige Elemente X, Y aus O gilt

$$f(X, Y)=f(Y, X).$$

2) Für beliebige Elemente X_i , Y_i (i=1,2) aus $\mathfrak O$ gilt

$$f(X_1+X_2, Y_1+Y_2) = \sum_{i,j=1}^{2} f(X_i, Y_j).$$

3) Für beliebige Elemente X, Y, Z aus $\mathbb O$ gilt Xf(Y,Z)+f(X,YZ)=f(XY,Z)+Zf(X,Y).

4) Für ein beliebiges Element x bzw. X aus $\mathfrak o$ bzw. $\mathfrak O$ gilt f(x,X) = 0.

Ferner versteht man unter einer normalen 1-Kette g von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{O}}$ eine lineare Abbildung von \mathbb{O} in $\overline{\mathbb{O}}$, welche für ein beliebiges Element x aus \mathfrak{o} bzw. X aus \mathbb{O} stets den Gleichungen

$$g(x) = 0$$
 und $g(xX) = xg(X)$

genügen. Setzt man dann für beliebige Elemente X, Y aus O

$$\delta g(X, Y) = Yg(X) + Xg(Y) - g(XY),$$

so ist δg offenbar ein normaler 2-Cozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{O}}$; δg

¹⁾ Hier sind nur die Hauptergebnisse dargelegt; eine ausführliche Darstellung der vorliegenden Note erscheint demnächst in Mathematical Journal of Okayama University, 5, No. 1.

²⁾ Unter einem Primideal versteht man ein vom Null- und Einheitsideal verschiedenes Primideal, also gibt es in $\overline{\mathfrak{D}}$ nur ein einziges Primideal.

heisst der 2-Corand von g.

Sind nun f_1 , f_2 normale 2-Cozyklen von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{O}}$, so definiert man die Summe f_1+f_2 von f_1 und f_2 auf folgende Weise:

$$(f_1+f_2)(X, Y)=f_1(X, Y)+f_2(X, Y),$$

wo X, Y unabhängig alle Elemente aus $\mathbb O$ durchlaufen. Offenbar bildet die Gesamtheit $Z^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$ aller 2-Cozyklen von $\mathbb O/\mathfrak o$ über $\overline{\mathbb O}$ bei obiger Summenbildung einen Modul mit $\overline{\mathbb O}$ als Linksmultiplikatorenbereich; dabei bildet die Gesamtheit $B^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$ der 2-Coränder aller normalen 1-Ketten von $\mathbb O/\mathfrak o$ über $\overline{\mathbb O}$ einen $\overline{\mathbb O}$ -Untermodul von $Z^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$. Die Faktorgruppe $H^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$ von $Z^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$ nach $B^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$ heisst die normale 2-Cohomologiegruppe von $\mathbb O/\mathfrak o$ über $\overline{\mathbb O}$; jedes Element aus $H^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$ heisst eine normale 2-Cohomologieklasse von $\mathbb O/\mathfrak o$ über $\overline{\mathbb O}$. Ferner heisst $B^{(2)}(\mathbb O/\mathfrak o;\overline{\mathbb O})$ die Nullklasse und ist mit 0 bezeichnet.

Es sei K_1 ein Zwischenkörper zwischen k und K, und \mathbb{O}_1 die Hauptordnung von K_1 . Dann heisst ein normaler 2-Cozyklus f von $\mathbb{O}_1/0$ über $\overline{\mathbb{O}}$,, zerfällt in \mathbb{O}_1 ", wenn die Einschränkung von f auf $\mathbb{O}_1/0$ gleich ist dem 2-Corand einer normalen 1-Kette von $\mathbb{O}_1/0$ über $\overline{\mathbb{O}}$. Es ist klar, dass alle 2-Cozyklen aus einer normalen 2-Cohomologieklasse von $\mathbb{O}/0$ über $\overline{\mathbb{O}}$ in \mathbb{O}_1 zerfallen, wenn sie irgendeinen in \mathbb{O}_1 zerfallenden 2-Cozyklus enthält; wir können also von einer in \mathbb{O}_1 zerfallenden 2-Cohomologieklasse von $\mathbb{O}/0$ über $\overline{\mathbb{O}}$ sprechen. Nun gilt zunächst:

Satz 1. Es bezeichne $H^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}_1; \overline{\mathbb{O}})$ diejenige $\overline{\mathbb{O}}$ -Untergruppe von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{O}})$, die aus allen und nur allen in \mathbb{O}_1 zerfallenden, normalen 2-Cohomologieklassen von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{O}}$ besteht. Dann ist $H^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}_1; \overline{\mathbb{O}})$ $\overline{\mathbb{O}}$ -isomorph zur normalen 2-Cohomologiegruppe $H^{(2)}(\mathbb{O}/\mathbb{O}_1; \overline{\mathbb{O}})$ von \mathbb{O}/\mathbb{O}_1 über $\overline{\mathbb{O}}$.

Es sei $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{O}})=U_0 \supseteq U_1 \supseteq \cdots \supseteq U_i \supseteq \cdots$ eine absteigende Folge von den $\overline{\mathbb{O}}$ -Untergruppen aus $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{O}})$ von der Art, dass für jedes $i(0 \le i)$ die Faktorgruppe U_i/U_{i+1} ein einfacher $\overline{\mathbb{O}}$ -Modul ist. Bricht dann die obige Folge im endlichen so ab, dass das letzte Glied die Nullklasse wird, so heisst die Folge eine $\overline{\mathbb{O}}$ -Kompositionsreihe von $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{O}})$. Dabei ist die Länge einer beliebigen $\overline{\mathbb{O}}$ -Kompositionsreihe von $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{O}})$ eine Invariante der Cohomologiegruppe, welche ich einfach die $\overline{\mathbb{O}}$ -Länge von $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{O}})$ nennen will.

Die Hauptordnung D heisse ,, einfach normal über o", wenn D

aus $\mathfrak o$ durch Ringadjunktion eines einzigen Elementes entsteht. Existiert ferner eine aufsteigende Folge $\mathfrak o = \mathfrak O_0 \subsetneq \mathfrak O_1 \subsetneq \cdots \subsetneq \mathfrak O_s = \mathfrak O$ von den Hauptordnungen $\mathfrak O_i(i=0,1,\ldots,s)$ derart, dass für jedes $i(1 \leq i \leq s) \mathfrak O_i$ über $\mathfrak O_{i-1}$ einfach normal ist, so heisse $\mathfrak O$,, normal über $\mathfrak o$ ".

Nun kann man folgenden Satz beweisen:

Satz 2. Es sei $\mathbb O$ normal über $\mathbb O$. Dann besitzt die normale 2-Cohomologiegruppe $H^{(2)}(\mathbb O/\mathbb O;\overline{\mathbb O})$ eine endliche $\overline{\mathbb O}$ -Basis; d.h. es existieren endlich viele 2-Cohomologieklassen C_1,C_2,\ldots,C_n aus $H^{(2)}(\mathbb O/\mathbb O;\overline{\mathbb O})$ von der Art, dass jede normale 2-Cohomologieklasse von $\mathbb O/\mathbb O$ über $\overline{\mathbb O}$ von der Form $\sum\limits_{i=1}^n A_i C_i (A_i \in \overline{\mathbb O},\ i=1,2,\ldots,n)$ ist, und dass aus einer Relation $\sum\limits_{i=1}^n A_i C_i = 0$ stets $A_1 C_1 = A_2 C_2 = \cdots = A_n C_n = 0$ folgen. Für eine beliebige normale 2-Cohomologieklasse C von $\mathbb O/\mathbb O$ über $\overline{\mathbb O}$ ist das annullierende Ideal3 von C aus $\overline{\mathbb O}$ stets ein Teiler der Differente $\mathbb O(K/k)$ von K/k. Ferner ist die $\overline{\mathbb O}$ -Länge von $H^{(2)}(\mathbb O/\mathbb O;\overline{\mathbb O})$ gleich dem $\overline{\mathbb O}$ -Exponenten von $\mathbb O(K/k)$. Wenn insbesondere $\mathbb O$ über $\mathbb O$ einfach normal ist, dann ist $H^{(2)}(\mathbb O/\mathbb o;\overline{\mathbb O})$ ein zyklischer $\overline{\mathbb O}$ -Modul; dabei ist das annullierende Ideal aus $\overline{\mathbb O}$ einer beliebigen erzeugenden 2-Cohomologie-klasse von $H^{(2)}(\mathbb O/\mathbb o;\overline{\mathbb O})$ gleich $\mathbb O(K/k)$.

Ferner gilt noch:

Satz 3. Es sei $\mathbb O$ normal über $\mathfrak o$ und $\mathbb O_1$ eine solche Zwischenhauptordnung zwischen $\mathfrak o$ und $\mathbb O$, dass $\mathbb O$ über $\mathbb O_1$ auch normal ist. Bezeichnet dann $H^{(2)}(\mathbb O/\mathfrak o, \mathbb O_1; \overline{\mathbb O})$ die Gesamtheit aller in $\mathbb O_1$ zerfallenden, normalen 2-Cohomologieklassen von $\mathbb O/\mathfrak o$ über $\overline{\mathbb O}$, so gilt folgende $\overline{\mathbb O}$ -Isomorphierelation:

$$(*) \qquad H^{(2)}(\mathfrak{O}/\mathfrak{o}; \overline{\mathfrak{O}}) / H^{(2)}(\mathfrak{O}/\mathfrak{o}, \mathfrak{O}_1; \overline{\mathfrak{O}}) {\cong} H^{(2)}(\mathfrak{O}_1/\mathfrak{o}; \overline{\mathfrak{O}}).$$

In der Relation (*) aus Satz 3 ist $H^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}_1; \overline{\mathbb{O}})$ nach Satz 1 $\overline{\mathbb{O}}$ -isomorph zur normalen 2-Cohomologiegruppe $H^{(2)}(\mathbb{O}/\mathbb{O}_1; \overline{\mathbb{O}})$. Bezeichnet man also den Quotientenkörper von \mathbb{O}_1 mit K_1 und die $\overline{\mathbb{P}}$ -Exponenten der Differenten von K/k und K/K_1 bzw. mit u und u_1 , so folgt aus der Relation (*), dass die $\overline{\mathbb{O}}$ -Länge von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{O}})$ gleich $u-u_1$ ist; nach dem bekannten Schachtelungssatz über Differenten ist $u-u_1$ gleich dem $\overline{\mathbb{P}}$ -Exponenten der Differente von K/k. Ferner folgt noch, dass $H^{(2)}(\mathbb{O}_1/\mathfrak{o}; \overline{\mathbb{O}})$ eine endliche $\overline{\mathbb{O}}$ -Basis besitzt und infolgedessen das annullierende Ideal einer beliebigen

³⁾ Dies ist das Ideal, welches aus allen C annullierenden Elementen aus $\overline{\mathfrak{D}}$ besteht.

⁴⁾ Vgl. etwa H. Hasse: Zahlentheorie, 316-317 (1950) (Berlin).

normalen 2-Cohomologieklasse von $\mathbb{O}_1/\mathfrak{o}$ über $\overline{\mathbb{O}}$ ein Teiler der Differente von K_1/k ist.

Wenn $\mathfrak D$ nicht notwendig über $\mathfrak o$ normal ist, dann betrachten wir eine K enthaltende, endlich-separable galoissche Erweiterung \overline{K} über k; die Hauptordnung von \overline{K} sei mit $\overline{\mathfrak D}$ bezeichnet. Dann ist $\overline{\mathfrak D}$ sicher normal sowohl über $\mathfrak o$ als über $\mathfrak D.^{\mathfrak o}$. Setzt man nun in der Relation (*) aus Satz 3

$$\overline{\mathfrak{Q}} = \overline{\mathfrak{Q}}$$
, $\mathfrak{Q} = \overline{\mathfrak{Q}}$ und $\mathfrak{Q}_1 = \mathfrak{Q}$,

so beweist man, dass die normale 2-Cohomologiegruppe $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{O}})$ ein $\overline{\mathbb{O}}$ -Modul mit endlicher $\overline{\mathbb{O}}$ -Basis ist, und dass die $\overline{\mathbb{O}}$ -Länge von $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{O}})$ gleich ist dem $\overline{\mathfrak{P}}$ -Exponenten der Differente von K/k.

Nun betrachten wir die normale 2-Cohomologiegruppe $[H^{(2)}(\mathbb{O}/o;\mathbb{O})]$ von \mathbb{O}/o über \mathbb{O} , und wir bezeichnen mit \mathfrak{P} das Primideal aus \mathbb{O} . Man beweist dann, dass $H^{(2)}(\mathbb{O}/o;\overline{\mathbb{O}})$ der durch $H^{(2)}(\mathbb{O}/o;\mathbb{O})$ erzeugte $\overline{\mathbb{O}}$ -Modul ist. Bezeichnet man ferner mit e die Verzweigungsordnung von \overline{K} über K, so gibt die $\overline{\mathbb{O}}$ -Länge von $H^{(2)}(\mathbb{O}/o;\overline{\mathbb{O}})$, dividiert durch e, den \mathfrak{P} -Exponenten der Differente von K/k an. Hieraus schliesst man folgenden

Satz 4. Die normale 2-Cohomologiegruppe $H^{(2)}(\mathbb{Q}/v;\mathbb{Q})$ von \mathbb{Q}/v über \mathbb{Q} besitzt eine endliche \mathbb{Q} -Basis; das annullierende Ideal aus \mathbb{Q} einer beliebigen 2-Cohomologieklasse von \mathbb{Q}/v über \mathbb{Q} ist stets ein Teiler der Differente von K/k. Ferner ist die \mathbb{Q} -Länge von $H^{(2)}(\mathbb{Q}/v;\mathbb{Q})$ gleich dem \mathfrak{P} -Exponenten der Differente von K/k.

Weiter kann man folgenden Satz beweisen:

Satz 5. Es sei K_1 ein Zwischenkörper zwischen k und K, und \mathbb{O}_1 sei die Hauptordnung von K_1 . Bezeichnet dann $H^{(2)}(\mathbb{O}/0, \mathbb{O}_1; \mathbb{O})$ diejenige \mathbb{O} -Untergruppe von $H^{(2)}(\mathbb{O}/0; \mathbb{O})$, die aus allen in \mathbb{O}_1 zerfallenden 2-Cohomologieklassen von $\mathbb{O}/0$ über \mathbb{O} besteht, so gilt die folgende \mathbb{O} -Isomorphierelation:

$$H^{(2)}(\mathbb{O}/\mathfrak{o};\mathbb{O}) \left/ H^{(2)}(\mathbb{O}/\mathfrak{o},\mathbb{O}_{\mathbf{1}};\mathbb{O}) \cong H^{(2)}(\mathbb{O}_{\mathbf{1}}/\mathfrak{o};\mathbb{O}). \right.$$

⁵⁾ Vgl. etwa M. Moriya: Theorie der Derivationen und Körperdifferenten, Math. Journ., Okayama Univ., 2, 128-129 (1953).