27. On the Number of Distinct Values of a Polynomial with Coefficients in a Finite Field

By Leonard Carlitz
Department of Mathematics, Duke University, U.S.A. (Comm. by Z. Suetuna, m.J.A., March 12, 1955)

1. Let $G F(q)$ denote the finite field of order $q=p^{\nu}$ and put

$$
\begin{equation*}
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x \quad\left(a_{j} \in G F(q)\right) \tag{1.1}
\end{equation*}
$$

where $1<n<p$. Let $V=V(f)$ denote the number of distinct values $f(x), x \in G F(q)$. Uchiyama [2] has proved the following theorem: Suppose that

$$
\begin{equation*}
f^{*}(u, v)=\frac{f(u)-f(v)}{u-v} \tag{1.2}
\end{equation*}
$$

is absolutely irreducible (that is, irreducible in every finite extension of $G F(q)$); then $V>q / 2$ for all $n \geqq 4$. It is pointed out this conclusion cannot be asserted without the hypothesis concerning $f^{*}(u, v)$; moreover the proof of the theorem makes use of a deep theorem of A . Weil on the number of solutions of equations in two unknowns in a finite field.

In this note we wish to point out that it is easy to prove that $V>q / 2$ on the average. More precisely we shall prove the following

Theorem. The sum

$$
\begin{equation*}
\sum_{a_{1} \in \in F(q)} V(f) \geqq \frac{q^{3}}{2 q-1} \geqq \frac{q^{2}}{2} \tag{1.3}
\end{equation*}
$$

where the summation is over the coefficient of the first degree term in $f(x)$.

We remark that this theorem is independent of any hypothesis on $f^{*}(u, v)$ and that the proof is quite elementary.
2. For $x \in G F(q)$, we define

$$
\begin{equation*}
e(x)=e^{2 \pi \iota S(x) / p}, \quad S(x)=x+x^{p}+\cdots+x^{p^{v-1}} \tag{2.1}
\end{equation*}
$$

Then $e(x+y)=e(x) e(y)$ and

$$
\sum_{x} e(x y)= \begin{cases}q & (y=0) \tag{2.2}\\ 0 & (y \neq 0)\end{cases}
$$

Following the notation of [2] we let M_{r} denote the number of $y \in G F(q)$ such that the equation $f(x)=y$ has precisely r distinct roots in $G F(q)$; then we have

$$
\begin{equation*}
V=\sum_{r=1}^{n} M_{r}, \quad q=\sum_{r=1}^{n} r M_{r} \tag{2.3}
\end{equation*}
$$

Also if $N_{1}=N_{1}(f)$ is the number of solutions (x, y) of $f(x)-f(y)=0$, then

$$
\begin{equation*}
N_{1}=\sum_{r=1}^{n} r^{2} M_{r} \tag{2.4}
\end{equation*}
$$

In the Cauchy inequality

$$
\begin{equation*}
\left(\sum a_{r} b_{r}\right)^{2} \leqq\left(\sum a_{r}^{2}\right)\left(\sum b_{r}^{2}\right) \tag{2.5}
\end{equation*}
$$

take $a_{r}^{3}=r^{2} M_{r}, b_{r}^{2}=M_{r}$, so, that $\left(\sum r M_{r}\right)^{2} \leqq\left(\sum r^{2} M_{r}\right)\left(\sum M_{r}\right)$. Using (2.3) and (2.4) this becomes

$$
\begin{equation*}
V(f) N_{1}(f) \geqq q^{2} \tag{2.6}
\end{equation*}
$$

A second application of (2.5) yields

$$
\sum_{a_{1}}\left(V(f) N_{1}(f)\right)^{1 / 2} \leqq\left(\sum_{a_{1}} V(f)\right)^{1 / 2}\left(\sum_{a_{1}} N_{1}(f)\right)^{1 / 2}
$$

and using (2.6) we get

$$
\begin{equation*}
\left(\sum_{a_{1}} V(f)\right)\left(\sum_{a_{1}} N_{1}(f)\right) \geqq q^{4} \tag{2.7}
\end{equation*}
$$

Now on the other hand it is clear from (2.2) that

$$
\begin{aligned}
q N_{1}(f) & =\sum_{t} \sum_{x, y} e\{t(f(x)-f(y))\} \\
& =q^{2}+\sum_{t \neq 0} \sum_{x, y} e\left\{t\left(x^{n}-y^{n}\right)+\cdots+t a_{1}(x-y)\right\} .
\end{aligned}
$$

Summing over a_{1} and again using (2.2) we get

$$
q \sum_{a_{1}} N_{1}(f)=q^{3}+q \sum_{t \neq 0} \sum_{x} 1=2 q^{3}-q^{2}
$$

so that

$$
\begin{equation*}
\sum_{a_{1}} N_{1}(f)=2 q^{2}-q . \tag{2.8}
\end{equation*}
$$

Substituting from (2.8) in (2.7) we have at once

$$
\sum_{a_{1}} V(f) \geqq \frac{q^{4}}{2 q^{2}-q}=\frac{q^{3}}{2 q-1}>\frac{q^{2}}{2},
$$

which completes the proof of (1.3).
3. It may be of interest to remark that the method used in proving (2.8) leads easily to the following result. Let $f\left(x_{1}, \ldots, x_{r}\right)$ denote a polynomial $\in G F\left[q, x_{1}, \ldots, x_{r}\right]$, where r is an arbitrary integer $\geqq 1$ and put

Then we have

$$
\begin{equation*}
M(f)=\sum_{x_{1}, \ldots, x_{r}} e\left(f\left(x_{1}, \ldots, x_{r}\right)\right) \tag{3.1}
\end{equation*}
$$

where $f\left(x_{1}, \ldots, x_{r}\right)=a_{1} x_{1}+\cdots+a_{r} x_{r}+$ terms of higher degree; in other words $M(f)$ is on the average of order $q^{r / 2}$. This result may be compared with [1, formula (8.4)].

References

[1] L. Carlitz: Invariantive theory of equations in a finite field, Trans. Amer. Math. Soc., 75, 405-427 (1953).
[2] S. Uchiyama: Sur le nombre des valeurs distinctes d'un polynôme à coefficients dans un corps fini, Proc. Japan Acad., 30, 930-933 (1954).

