27. On the Number of Distinct Values of a Polynomial with Coefficients in a Finite Field

By Leonard CARLITZ

Department of Mathematics, Duke University, U.S.A. (Comm. by Z. SUETUNA, M.J.A., March 12, 1955)

1. Let GF(q) denote the finite field of order $q=p^{\nu}$ and put (1.1) $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x$ $(a_j \in GF(q))$, where 1 < n < p. Let V=V(f) denote the number of distinct values $f(x), x \in GF(q)$. Uchiyama [2] has proved the following theorem: Suppose that

(1.2)
$$f^*(u, v) = \frac{f(u) - f(v)}{u - v}$$

is absolutely irreducible (that is, irreducible in every finite extension of GF(q)); then V > q/2 for all $n \ge 4$. It is pointed out this conclusion cannot be asserted without the hypothesis concerning $f^*(u, v)$; moreover the proof of the theorem makes use of a deep theorem of A. Weil on the number of solutions of equations in two unknowns in a finite field.

In this note we wish to point out that it is easy to prove that V > q/2 on the average. More precisely we shall prove the following

Theorem. The sum

(1.3)
$$\sum_{a_1 \in GF(q)} V(f) \ge \frac{q^3}{2q-1} \ge \frac{q^2}{2},$$

where the summation is over the coefficient of the first degree term in f(x).

We remark that this theorem is independent of any hypothesis on $f^*(u, v)$ and that the proof is quite elementary.

2. For $x \in GF(q)$, we define

(2.1) $e(x) = e^{2\pi i S(x)/p}, \qquad S(x) = x + x^p + \dots + x^{p^{\nu-1}}.$ Then e(x+y) = e(x)e(y) and (2.2) $\sum_{x} e(xy) = \begin{cases} q & (y=0) \\ 0 & (y \neq 0). \end{cases}$

Following the notation of [2] we let M_r denote the number of $y \in GF(q)$ such that the equation f(x)=y has precisely r distinct roots in GF(q); then we have

(2.3)
$$V = \sum_{r=1}^{n} M_r, \qquad q = \sum_{r=1}^{n} r M_r.$$

Also if $N_1 = N_1(f)$ is the number of solutions (x, y) of f(x) - f(y) = 0, then

(2.4)
$$N_1 = \sum_{r=1}^n r^2 M_r.$$

In the Cauchy inequality $(\sum a_r b_r)^2 \leq (\sum a_r^2) (\sum b_r^2)$ (2.5)take $a_r^2 = r^2 M_r$, $b_r^2 = M_r$, so, that $(\sum r M_r)^2 \leq (\sum r^2 M_r) (\sum M_r)$. Using (2.3) and (2.4) this becomes $V(f)N_1(f)\geq q^2$. (2.6)A second application of (2.5) yields $\sum_{\substack{a_1 \ a_2}} (V(f) N_1(f))^{1/2} \leqq (\sum_{a_1} V(f))^{1/2} (\sum_{a_1} N_1(f))^{1/2},$ and using (2.6) we get $(\sum_{a_1} V(f)) (\sum_{a_1} N_1(f)) \ge q^4.$ (2.7)Now on the other hand it is clear from (2.2) that $qN_{1}(f) = \sum_{t} \sum_{x,y} e\{t(f(x) - f(y))\} \\ = q^{2} + \sum_{t \neq 0} \sum_{x,y} e\{t(x^{n} - y^{n}) + \dots + ta_{1}(x - y)\}.$ Summing over a_1 and again using (2.2) we get $q\sum_{a_1}N_{\scriptscriptstyle 1}(f)\!=\!q^{\scriptscriptstyle 3}\!+\!q\sum_{t\neq 0}\sum_x 1\!=\!2q^{\scriptscriptstyle 3}\!-\!q^{\scriptscriptstyle 2}$, so that $\sum_{a_1} N_{\scriptscriptstyle 1}(f) = 2q^2 - q.$ (2.8)Substituting from (2.8) in (2.7) we have at once

$$\sum_{a_1} V(f) \ge rac{q^4}{2q^2 - q} = rac{q^3}{2q - 1} > rac{q^2}{2},$$

which completes the proof of (1.3).

3. It may be of interest to remark that the method used in proving (2.8) leads easily to the following result. Let $f(x_1, \ldots, x_r)$ denote a polynomial $\in GF[q, x_1, \ldots, x_r]$, where r is an arbitrary integer ≥ 1 and put

$$M(f) = \sum_{x_1,\ldots,x_r} e(f(x_1,\ldots,x_r)).$$

Then we have

(3.1)
$$\sum_{a_1,\ldots,a_r} |M(f)|^2 = q^{2r},$$

where $f(x_1, \ldots, x_r) = a_1 x_1 + \cdots + a_r x_r + \text{terms of higher degree; in other words <math>M(f)$ is on the average of order $q^{r/2}$. This result may be compared with [1, formula (8.4)].

References

- L. Carlitz: Invariantive theory of equations in a finite field, Trans. Amer. Math. Soc., 75, 405–427 (1953).
- [2] S. Uchiyama: Sur le nombre des valeurs distinctes d'un polynôme à coefficients dans un corps fini, Proc. Japan Acad., 30, 930-933 (1954).