25. On the Convergence of Some Gap Series

By Noboru Matsuyama and Shigeru Takahashi
Mathematical Institute, Kanazawa University, Japan (Comm. by Z. Suetuna, m.J.A., March 12, 1955)

§ 1. Let $f(x),-\infty<x<+\infty$, be a function satisfying the following conditions:

$$
\begin{equation*}
f(x+1)=f(x), \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=0, \quad \int_{0}^{1} f^{2}(x) d x=1 . \tag{1.2}
\end{equation*}
$$

Further, let us put

$$
\begin{equation*}
\omega(n)=\left(\int_{0}^{1}\left|f(x)-s_{n}(x)\right|^{2} d x\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

where $s_{n}(x)$ denotes the n-th partial sum of the Fourier series of $f(x)$.

The following theorems were proved for the sequence $\left\{n_{k}\right\}$ of integers which has the Hadamard gap.

Theorem of M. Kac, R. Salem, and A. Zygmund [1]. If

$$
\begin{equation*}
\omega(n)=O\left(1 /(\log n)^{\alpha}\right), \quad \alpha>1 \quad(n \rightarrow+\infty) \tag{1.4}
\end{equation*}
$$

and
(1.5)

$$
\sum c_{n}^{2}(\log n)^{2}<\infty
$$

then the series

$$
\begin{equation*}
\sum c_{k} f\left(n_{k} x\right) \tag{1.6}
\end{equation*}
$$

converges almost everywhere.
Theorem of S. Izumi [2]. If

$$
\omega(n)=O\left(1 / n^{a}\right), \quad \alpha>0 \quad(n \rightarrow+\infty)
$$

and
(1.8)

$$
\sum c_{n}^{2}\left(\log _{2} n\right)^{2}<+\infty,
$$

then (1.6) converges almost everywhere.
The purpose of this paper is to generalize above results. Following G. Alexits [3], we shall say that a sequence $\left\{a_{n}\right\}$ is $\lambda(n)$-lacunary if
(1.9) [the number of n 's such that $a_{n} \neq 0$ for $\left.2^{k} \leqq n<2^{k+1}\right]=O(\lambda(k))$

$$
(k \rightarrow+\infty),
$$

where $\{\lambda(n)\}(n=0,1,2, \ldots)$ is a non-decreasing sequence of positive numbers.

In the following, we shall assume that the sequence $\left\{a_{n}\right\}$ is $\lambda(n)$-lacunary and treat the convergence problem of the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} f(k x) . \tag{1.10}
\end{equation*}
$$

In $\S \S 3-5$, we prove the following theorems.
Theorem 1. If (1.4) is satisfied and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda(n) \sum_{k=i^{n}}^{2^{n+1}-1} \alpha_{k}^{2}<+\infty, \tag{1.11}
\end{equation*}
$$

then the almost everywhere ($C, 1$) summability of (1.10) implies the almost everywhere convergence of (1.10).

Theorem 2. If (1.4) is satisfied and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda(n)(\log n)^{2^{2}} \sum_{k=2^{n}}^{2^{n+1}}-1 \quad a_{k}^{2}<+\infty, \tag{1.12}
\end{equation*}
$$

then (1.10) converges almost everywhere.
Theorem 3. If (1.7) is satisfied and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda(n)\left(\log _{2} n\right)^{2} \sum_{k=2^{n}}^{2^{n+1}-1} a_{k}^{3}<+\infty, \tag{1.13}
\end{equation*}
$$

then (1.10) converges almost everywhere.
§ 2. Lemma 1. If (1.4) is satisfied, then for any i and j such that $2^{n} \leqq i<2^{n+1}, 2^{n+k} \leqq j<2^{n+k+1}$, we have

$$
\begin{equation*}
\left|\int_{0}^{1} f(i t) f(j t) d t\right|=O\left(\frac{1}{k^{\alpha}}\right) \quad(k \rightarrow+\infty) \tag{2.1}
\end{equation*}
$$

Proof. This is Lemma 1, [2].
For the convenience, we put

$$
\begin{equation*}
T_{k}(x)=\sum_{i=2^{k}}^{2^{k+1}-1} a_{i} f(i x), \quad b_{k}^{2}=\sum_{i=9^{k}}^{2^{k+1}-1} a_{i}^{2} \tag{2.2}
\end{equation*}
$$

Lemma 2. If (1.4) is satisfied, then

$$
\begin{equation*}
\int_{0}^{1}\left(\sum_{k=0}^{n} T_{k}(x)\right)^{2} d x \leqq A \sum_{k=0}^{n} \lambda(k) b_{k}^{p} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \operatorname{Max}_{0 \leq j \leq n}\left(\sum_{k=0}^{j} T_{k}(x)\right)^{2} d x \leqq A(\log n)^{2} \sum_{k=0}^{n} \lambda(k) b_{k}^{2} . \tag{2.4}
\end{equation*}
$$

Proof. We have

$$
\int_{0}^{1}\left(\sum_{k=0}^{n} T(x)\right)^{2} d x=\sum_{k=0}^{n} \int_{0}^{1} T_{k}^{2}(x) d x+2 \sum_{0 \leq k<k^{\prime} \leq n} \int_{0}^{1} T_{k}(x) T_{k^{\prime}}(x) d x \equiv I_{1}+2 I_{2}
$$

From (2.2), we have $\left|I_{1}\right| \leqq \sum_{k=0}^{n} \lambda(k) b_{k}^{p}$, and, by (2.1)

$$
\begin{align*}
& \left|\int_{0}^{1} T_{k}(x) T_{k^{\prime}}(x) d x\right|=\left|\sum_{i=j^{k}}^{2^{k+1}-1} \sum_{j=k^{\prime}}^{2^{k^{\prime}+1}-1} a_{i} a_{j} \int_{0}^{1} f(i x) f(j x) d x\right| \tag{2.5}\\
\leqq & \frac{A}{\left(k^{\prime}-k\right)^{x}} \sum_{i=2^{k}}^{s^{k+1}-1}\left|a_{i}\right| \sum_{j=2^{k^{\prime}}}^{k^{\prime}+1}\left|a_{j}\right| \leqq \frac{A}{\left(k^{\prime}-k\right)^{\alpha}} b_{k} b_{k}^{\prime}\left(\lambda(k) \lambda\left(k^{\prime}\right)\right)^{1 / 2} .
\end{align*}
$$

Hence, we have

$$
\left|I_{2}\right| \leqq A \sum_{0 \leq k \leqq k^{\prime} \leq n} \frac{1}{\left(k^{\prime}-k\right)^{\alpha}} b_{k} b_{k^{\prime}}\left(\lambda(k) \lambda\left(k^{\prime}\right)\right)^{1 / 2} \leqq A \sum_{k=0}^{n} \lambda(k) b_{k}^{?} .
$$

Thus (2.3) is proved.
(2.4) is an analogue of the Menchoff's lemma [4]. Proof runs on the similar lines as this. The difterence lies in the point that the Bessell's inequality is replaced by (2.3).
§3. Proof of Theorem 1. Let us put $\tau_{n}(x)=S_{2^{n}-1}(x)-\sigma_{2}{ }^{n}{ }_{-1}(x)$ where $S_{n}(x)$ and $\sigma_{n}(x)$ denote the n-th partial sum and $(C, 1)$ mean of the series (1.10) respectively. By (2.3) and (1.11) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{V}^{1} \tau_{n}^{2}(x) d x=\sum_{n=1}^{\infty} \frac{1}{\left(2^{n}-1\right)^{2}} \int_{0}^{1}\left[\sum_{k=1}^{2^{n}-1}(k-1) a_{k} f(k x)\right]^{2} d x \\
\leqq & A \sum_{n=1}^{\infty} \frac{1}{2^{2 n}} \sum_{k=1}^{n-1} \lambda(k) \sum_{m=2^{k}}^{2^{k+1}-1} a_{m}^{2}(m-1)^{2} \leqq A \sum_{k=1}^{\infty} \lambda(k) \sum_{m=2^{k}}^{2^{k+1}-1} a_{m}^{2}(m-1)^{2} \sum_{n=k+1}^{\infty} \frac{1}{2^{2 n}} \\
\leqq & A \sum_{k=1}^{\infty} \lambda(k) b_{k}^{?}<+\infty .
\end{aligned}
$$

This shows that the almost everywhere convergence of $\sigma_{2^{n}-1}(x)$ implies that of $S_{2} n_{-1}(x)$. We have

$$
\int_{0}^{1} \operatorname{Max}_{2^{n} \leq m<2^{n+1}}\left(\sum_{k=2^{n}}^{m} a_{k} f(k x)\right)^{2} d x \leqq \int_{0}^{1}\left(\sum_{k=2^{n}}^{2^{n+1}-1}\left|a_{k} f(k x)\right|\right)^{2} d x \leqq \lambda(n) b_{n}^{2}
$$

and then, by (1.11),

$$
\sum_{n=1}^{\infty} \int_{0}^{1} \operatorname{Max}_{2^{n} \leq m<2^{n+1}}\left(\sum_{k=2^{n}}^{m} a_{k} f(k x)\right)^{2} d x<+\infty .
$$

Thus the theorem is proved.
§4. Proof of Theorem 2. From the preceding proof, it is sufficient to prove that the sequence

$$
\sum_{k=0}^{n} T_{k}(x)=S_{2^{n+1}-1}^{\dot{n}}(x)
$$

converges almost everywhere.
By (1.12) and (2.3), there exists a function $F(x)$ of the L_{2}-class such that for any $\varepsilon<0$

$$
\left(\int_{0}^{1}\left|F(x)-\sum_{k=0}^{m} T_{k}(x)\right|^{2} d x\right)^{1 / 2}<\varepsilon \quad m>M=M(\varepsilon) .
$$

Thus we have

$$
\begin{gathered}
\left(\int_{0}^{1}\left(F(x)-\sum_{k=0}^{n} T_{k}(x)\right)^{2} d x\right)^{1 / 2} \\
\leqq\left(\int_{0}^{1}\left(F(x)-\sum_{k=0}^{m} T_{k}(x)\right)^{2} d x\right)^{1 / 2}+\left(\int_{0}^{1}\left(\sum_{k=n+1}^{m} T_{k}(x)\right)^{2} d x\right)^{1 / 2} \\
\leqq A\left(\sum_{k=n+1}^{m} \lambda(k) b_{k}^{2}\right)^{1 / 2}+\varepsilon \leqq A\left(\sum_{n+1}^{\infty} \lambda(k) b_{k}^{2}\right)^{1 / 2}=r_{n}^{1 / 2} .
\end{gathered}
$$

By (1.12), it follows that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} r_{2} n=\sum_{k=1}^{\infty} k\left(r_{2^{k}-}-r_{2^{k+1}}\right)+\lim _{n \rightarrow \infty} n r_{2^{n+1}} \\
= & \sum_{k=1}^{\infty} k \lambda\left(2^{k+1}\right) b_{2^{k+1}}^{2} \leqq \sum_{k=1}^{\infty}(\log k) \lambda(k) b_{k}^{2}<+\infty .
\end{aligned}
$$

This shows that the sequence $\sum_{k=0}^{9^{n}} T_{k}(x)$ converges almost everywhere. Now, by (1.12) and (2.4), we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{0}^{1} \operatorname{Max}_{2^{n} \leq m<2^{n+1}}\left(\sum_{k=2^{n}}^{m} T_{k}(x)\right)^{2} d x \leqq A \sum_{n=1}^{\infty}\left(\log 2^{n}\right)^{2} \sum_{k=2^{n}}^{2^{n+1}-1} \lambda(k) b_{k}^{2} \\
\leqq & A \sum_{n=1}^{\infty} \sum_{k=2^{n}}^{2^{n+1}-1}(\log k)^{2} \lambda(k) b_{k}^{2}<+\infty .
\end{aligned}
$$

This shows that the series $\sum_{k=0}^{\infty} T_{k}(x)$ converges almost everywhere.
§ 5. Proof of Theorem 3. Let us put

$$
\begin{equation*}
U_{k}(x)=\sum_{i=2^{k}}^{9^{k+1}-1} a_{l} s_{\mu_{k}}(i x), \quad V_{k}(x)=T_{k}(x)-U_{k}(x) \tag{5.1}
\end{equation*}
$$

where $\mu_{k}=\left[k^{1 / 2 x}(\log k)^{\beta / 2 \alpha}\right], \beta>1$, for $k=2,3, \ldots$.
Then by (1.1) and (1.7) we have

$$
\begin{aligned}
& \int_{0}^{1} \sum_{k=2}^{\infty}\left|V_{k}(x)\right| d x \leqq \int_{0}^{1} \sum_{k=2}^{\infty}\left|f(x)-s_{\mu_{k}}(x)\right| \cdot\left|\sum_{i=l^{k}}^{2 k+1} a_{i}\right| d x \\
\leqq & \int_{0}^{1} \sum_{k=2}^{\infty}\left|f(x)-s_{\mu_{k}}(x)\right| \cdot\left|\lambda(k) b_{k}^{2}\right|^{1 / 2} d x \\
\leqq & \left(\int_{0}^{1}\left(\sum_{k=2}^{\infty}\left|f(x)-s_{\mu_{k}}(x)\right|^{2}\right)^{1 / 2} d x\right)\left(\sum_{k=2}^{\infty} \lambda(k) b_{k}^{2}\right)^{1 / 2} \\
\leqq & A\left(\sum_{k=2}^{\infty} \int_{0}^{1}\left|f(x)-s_{\mu_{k}}(x)\right|^{2} d x\right)^{1 / 2} \leqq A\left(\sum_{k=2}^{\infty} \frac{1}{k(\log k)^{\beta}}\right)^{1 / 2}<+\infty .
\end{aligned}
$$

Hence the series $\sum\left|V_{k}(x)\right|$ converges almost everywhere and in the L_{2}-mean.

On the other hand, by (1.13) and (2.3), the series $\sum T_{k}(x)$ converges in the L_{2}-mean, and hence the series $\sum U_{k}(x)$ converges in the L_{2}-mean, and then is the Fourier series of a function of the L_{2}-class. The m_{k}-th term in the series $\sum U_{k}(x)$ is the trigonometrical polynomial with the first term

$$
a_{2^{m_{k}}}\left[A_{1} \cos \left(2 \pi 2^{m_{k}} x\right)+B_{1} \sin \left(2 \pi 2^{m_{k}} x\right)\right],
$$

and with the last term

$$
\left.a_{2}{ }^{m_{k}+1}+A_{\mu_{m_{k}}} \cos \left\{2 \pi\left(2^{m_{k}+1}-1\right) \mu_{m_{k}} x\right\}+B_{\mu_{m_{k}}} \sin \left\{2 \pi\left(2^{m_{h}+1}-1\right) \mu_{m_{k}} x\right\}\right],
$$

where A_{n} and B_{n} are the n-th Fourier coefficients of $f(x)$.
Let us now put

$$
\sum U_{k}(x)=\sum c_{k} U_{k}(x)+\sum c_{k}^{\prime} U_{k}(x)
$$

where $c_{k}^{\prime}=1-c_{k}$ and

$$
c_{k}=\left\{\begin{array}{ll}
1 & \text { for } m_{2 v-1}<k \leqq m_{2 v} \\
0 & \text { otherwise }
\end{array} \quad(v=1,2, \ldots)\right.
$$

If we take

$$
m_{k}=\left[k(\log k)^{r}\right], \quad \gamma>1,
$$

then

$$
B(\log k)^{r}>m_{k+1}-m_{k}>B^{\prime}(\log k)^{r},
$$

where B and B^{\prime} are positive constants independent of k. From the definitions of m_{k} and μ_{k} we have, for $k \geqq k_{0}$,

$$
\left(2^{m_{2 k}+1}-1\right) \mu_{m_{2 k}}<2^{m_{2 k}+1}
$$

and

$$
2 \cdot\left(2^{m_{2 k}+1}-1\right) \mu_{m_{2 k}}<\left(2^{m_{2 k+2}+1}-1\right) \mu_{m_{2 k+2}} .
$$

Hence by Kolmogoroff's theorem [5] the series $\sum c_{k} U_{k}$ converges almost everywhere, and the same holds for $\sum c_{k}^{\prime} U_{k}$, and hence the sequence $\sum_{i=0}^{m_{\hbar}} T_{i}(x)$ converges almost everywhere.
On the other hand

$$
\begin{aligned}
& \int_{0}^{1} \operatorname{Max}_{m_{k}<n \leq m_{k+1}}\left|\sum_{i=m_{k}}^{n} T_{i}(x)\right|^{2} d x \leqq A \sum_{k}\left(\log \left(m_{k+1}-m_{k}\right)\right)^{2} \sum_{i=m_{k}+1}^{m_{k}+1} \lambda(i) b_{i}^{2} \\
\leqq & A \sum_{k}\left(\log _{2} k\right)^{2} \sum_{i=m_{k}+1}^{m_{k}+1} \lambda(i) b_{i}^{2} \leqq A \sum_{k} \sum_{i=m_{k}+1}^{m_{k+1}}\left(\log _{2} i\right)^{2} \lambda(i) b_{i}^{2},
\end{aligned}
$$

which is finite. Thus, by the familiar way, we get the almost everywhere convergence of the series $\sum_{i=0}^{\infty} T_{i}(x)$. Thus the theorem is proved.

References

[1] M. Kac, R. Salem, and A. Zygmund: A gap theorem, Trans. Amer. Math. Soc., 67, 235-243 (1949).
[2] S. Izumi: Notes on Fourier analysis (XLI), Tôhoku Math. Jour., 3, 89-103 (1951).
[3] G. Alexits: Sur la convergence des series lacunaires, Acta Sci. Math., 11, 251253 (1948); 13, 14-17 (1949).
[4] S. Kacgmarz und H. Steinhaus: Theorie der Orthogonalreihen.
[5] A. Zygmund: Trigonometrical series.

