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§1. Let f(®), —wo<x<+c, be a function satisfying the
following conditions:

(L.1) S+ 1)=f(),

and

(1.2) / ' f@)dw=0, / Fr@)do=1.
Further, let us puto '

(1.8) o= [ @—a@)| dx)”

where s,(xr) denotes the n-th partial sum of the Fourier series of
f(@).

The following theorems were proved for the sequence {n,} of
integers which has the Hadamard gap.

Theorem of M. Kac, R. Salem, and A. Zygmund [1]. If

1.4) w(n)=0(1/(log n)*), a>1 (n—>+ »)
and

(1.5) Sen(log n)y*< oo,

then the series

(1.6) > oS (n,2)

converges almost everywhere.
Theorem of S. Izumi [2]. If

@a.7 o(n)=0(1/n%), a>0 (n—>+ )
and
(1.8) Stei(log, m)* < + o0,

then (1.6) converges almost everywhere.

The purpose of this paper is to generalize above results. Follow-
ing G. Alexits [8], we shall say that a sequence {a,} is A(n)-lacunary
if
(1.9) [the number of n’s such that a,==0 for 2*<n<2**']=00(k))

(b—>+ o),
where {i(n)}(n=0,1,2,...) is a non-decreasing sequence of positive
numbers.

In the following, we shall assume that the sequence {a,} is
A(n)-lacunary and treat the convergence problem of the series

(1.10) S auf (ko).
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In §§ 8-5, we prove the following theorems.
Theorem 1. If (1. 4) 18 satisfied and

on+l_q

1.11) zz(n) 2 ai< + oo,

n=1 B
then the almost everywhere (C, 1) summabzl@ty of (1.10) tmplies the
almost everywhere convergence of (1.10).

Theorem 2. If (1.4) is satisfied and

o o +1_

(1.12) > A(m)(log m)? Z < + o0,
n=1 k=2

then (1.10) converges almost everywhere.

Theorem 3. If (1.7) is satisfied and

o+l _

(1.18) gl(n) (logamy* 33 "<+ oo,

k-2
then (1.10) comverges almost everywhere.

§2. Lemma 1. If (1.4) is satisfied, then for any ¢ and j such
that 2" < ¢ <20+l 2nrF < 5 < 2™+ e hove

2.1) f "Gty F (GO)de| =0 (%) (> + oo).

Proof. This is Lemma 1, [2].

For the convenience, we put
¢k+1 -1

(2.2) Ti@) = 2 auf(iz), b= Z a;.
Lemma 2. If (1.4) ;:satzsﬁed then -

(2.8) f (z Tk(ac)> dn < A 31008},

and '

(2.4) [ Max (S Tiw) | do < Alog ) 33 2B

Proof. We have
(S ‘o= [(Tro)ds+2 S f T ()T @) dw=I, + 21
JBre)w=% [ | DT+ 21,

From (2.2), we have |I,| < :ﬁ;x(l@b,z, and, by (2.1)

gk+1_y ok +1_

(2.5) }flTk(x)T,cl(x)dwbz 2 2 a,0; ff(w)f(jx)dx
AT e 4 s
S @i 3% 5 | oS gl thamuyn,

Hence, we have

1 Z\\1
LISA_S g b)) = A3 2(k)bi.

Thus (2.8) is proved.
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(2.4) is an analogue of the Menchoff’s lemma [4]. Proof runs
on the similar lines as this. The difterence lies in the point that
the Bessell’s inequality is replaced by (2.8).

§3. Proof of Theorem 1. Let us put 7,(x)=Sy_,(x)—oym_,(X)
where S,(x) and ¢,(x) denote the n-th partial sum and (C,1) mean
of the series (1.10) respectively. By (2.8) and (1.11) we have

3| (@) dw= 3| S f l[%l(k—l)ak f(kx)]zdx

@21y

0o 1 n-1 k+1 -1 k+1 oo 1
=45 L3S am-1r 24300 S am—1y 5 L

n=1 2% %=1 oy ot 251 220
< A i)bi< + oo.

k=1

This shows that the almost everywhere convergence of oy ;(x) im-
plies that of Sy»_,(x). We have

1 m
<
[ e (Sari) ao= [(75
and then, by (1.11),
i ' Max <Z} a,cf(lcm)> dr< + oo,
n=1 PX $m<3n+1 I

Thus the theorem is proved.

gft+1_

53 )| ) de = 30,

§4. Proof of Theorem 2. From the preceding proof, it is
sufficient to prove that the sequence

% Ty(x)= Syt (@)
converges almost everywhere.

By (1.12) and (2.3), there exists a function F'(x) of the L,-class
such that for any ¢<0

([1F@-2nw ) < n-M=Me).

(f (rr gmeo)as)
(J (o Fneo o) (70 0"

<A ( 5 z(k)bi)l/z re=A( S z(k)b;) =i,

k=n-+1

Thus we have

IA

By (1.12), it follows that
i Pro= Z F(ryfo—ropr)st lim nrgn

n=1 n »o

= ST e = 3 (log ) AR)B< + oo,
=1 =1
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o

This shows that the sequence ZOT,,(x) converges almost everywhere.
k=
Now, by (1.12) and (2.4), we have

ﬁ; " Max (= Tk(m)) dz < A3 (log 2 zl; A006)B

n=1 ""’.Sm<2”+‘ P ="
274 +1_

<A Z (log k)2 A(k)bi < + oo

n=1 k-2
This shows that the series E‘)Tk(x) converges almost everywhere.
k=
8§ 5. Proof of Theorem 3. Let us put

ok+1_

(6.1) Ui(w)= E azsu (@),  Vi(@)=Tyx)— Ux(®)

where p,=[k"**(log Ic)"’z“], B>1, for £k=2,38,... .
Then by (1 1) and (1.7) we have

2 v de = [ 3] f@-5,0) Sad
< f z‘ f(x)—suk(w)|~‘/l(k)b,; dx
=([(E)r@=-s,@| ) do) ( Sawnr)"”

=4a( 3 [ro-sm dz)’ §A<gmg§7c—)g>w<+m.

Hence the series >)| Vi,(x)| converges almost everywhere and in
the L,-mean.

On the other hand, by (1.18) and (2.8), the series >)7T.(«) con-
verges in the L,-mean, and hence the series >} Uy x) converges in
the L,mean, and then is the Fourier series of a function of the
L,-class. The m,-th term in the series >} U,(z) is the trigonometrical
polynomial with the first term

@ [ Ay cOS (22" x)+ B, sin (272™ x) ],
and with the last term
”%“[Ap,m cos {27 (2™s+1 — 1),um x} + B, s1n{27r(2’”b+‘—1)pm,¢x}],
where A4, and B, are the n-th Fourler coeﬂicients of f(x).
Let us now put
2 Uk) =31 e, Us@) + 21 crUy(®)

where c¢,=1—e¢, and

. _{1 for my,_<k < m,, v=12,...),
0 otherwise.
If we take
mlc:[k (lOg k)TL 'Y>1)
then

B (log k) >my.,—m,>B' (log k)",
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where B and B’ are positive constants independent of 4. From the

definitions of m, and u, we have, for k >k,
(279! — 1)t < 273*7,

and 2+ (272t — 1)ty < (2Mapva*! — 1),1,,,2“2.

Hence by Kolmogoroff’s theorem [5] the series 3¢, U, converges

almost everywhere, and the same holds for 3 ¢iU,, and hence the

My
sequence ;}T,(x) converges almost everywhere.
On the other hand

1 n 2 Mtl
Max | ) Ti@)| do < A (g (e —m0))* 3} X0l
4 Mp<n=my, 4 g t-mk k i=mk+1
mk-l"l m

k+1
SAS(og. kP 3 AOB=AS] ST (log,i) A0}
=M, + =Mp+
which is finite. Thus, by the familiar way, we get the almost

everywhere convergence of the series iTi(w). Thus the theorem
{=0
is proved.
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