73. Cycles and Multiple Integrals on Abelian Varieties

By Hisasi Morikawa
Department of Mathematics, Nagoya University, Japan
(Comm. by Z. Suetuna, m.J.A., June 13, 1955)

In the present note we shall show some relations between cycles and multiple integrals which are similar to the known relations between divisors and simple integrals on abelian varieties.

Let \mathbf{A} be an abelian variety of dimension n defined by a period matrix

$$
\Omega=\left(\begin{array}{lll}
\omega_{11}, \ldots, & \omega_{12 n} \\
\vdots & \vdots \\
\omega_{n 1}, \ldots, & \omega_{n 2 n}
\end{array}\right) .
$$

We denote by $\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{2 n}$ the cycles of dimension are on \mathbf{A} induced by vectors ${ }^{t}\left(\omega_{11}, \ldots, \omega_{n 1}\right), \ldots,{ }^{t}\left(\omega_{12 n}, \ldots, \omega_{n 2 n}\right)$ respectively. We denote by $\mathrm{Z}_{i_{1} \ldots i_{r}} i_{1}<\cdots<i_{r}$ the cycles of dimension r on \mathbf{A} induced by parallelotopes of dimension r

$$
\left(\begin{array}{lll}
\omega_{1 i_{1}} & \cdots & \omega_{1 i_{r}} \\
\vdots & \vdots \\
\omega_{n i_{1}} & \ldots & \omega_{n i_{r}}
\end{array}\right)
$$

respectively. Denoting by $d z_{1}, \ldots, d z_{n}$ the differentials of the first kind associated with the period systems $\left(\omega_{11}, \ldots, \omega_{12 n}\right), \ldots,\left(\omega_{n 1}, \ldots, \omega_{n 2 n}\right)$ respectively, we mean by $\Omega^{(p, q)}$ the period matrix of r-ple differentials
$\mathrm{dz}_{j_{1}} \ldots \mathrm{dz}_{j_{p}} \mathrm{~d}_{\mathrm{z}_{k_{1}}} \ldots \mathrm{~d}_{\bar{z}_{q}}$ whose type (p, q) satisfies $p-q=r$ mod. 4 with the period cycles $\mathrm{Z}_{i_{1} \cdots i_{r}}$, where $j_{1}<\cdots<j_{p}, k_{1}<\cdots<k_{q}$, $i_{1}<\cdots<i_{r}$.

We put

$$
\begin{aligned}
& \left(\mathrm{dz}_{j_{1}} \ldots \mathrm{dz}_{j_{p}} \mathrm{dz}_{k_{1}} \ldots \mathrm{dz}_{k_{q}}\right)^{\dagger}=\varepsilon_{j_{1} \ldots j_{n}}^{1 \ldots \ldots} \varepsilon_{k_{1} \ldots k_{n}}^{1 \cdots n} \mathrm{dz}_{k_{q+1}} \ldots \mathrm{dz}_{k_{n}} \mathrm{~d}_{j_{p+1}} \ldots \mathrm{~d} \overline{\mathrm{z}}_{j_{n}} \\
& Z_{i_{1}}{ }^{\dagger} \ldots i_{r}=\varepsilon_{i_{1} \ldots i_{2 n}}^{1 \ldots 2 n} Z_{i_{r+1} \ldots i_{2 n}} .
\end{aligned}
$$

We assume that the orders of suffixes of matrix elements in $\Omega^{(p, q)}, \Omega^{(n-q, n-p)}$ are chosen in such a way that
$\mathrm{dz}_{j_{1}} \ldots \mathrm{dz}_{j_{p}} \mathrm{~d}_{\bar{k}_{1_{1}}} \ldots \mathrm{~d}_{k_{k_{q}}}, \mathrm{Z}_{i_{1} \ldots i_{r}}$ corresponds to
$\left(\mathrm{dz}{j_{1}} \ldots \mathrm{~d} z_{j_{p}} \mathrm{~d} \bar{z}_{k_{1}} \ldots \mathrm{~d} \overline{\mathrm{z}}_{k_{q}}\right)^{\dagger}, \mathrm{Z}_{i_{1}}{ }^{\dagger} \ldots i_{r} \quad$ respectively.
We denote by σ the homomorphism from $\mathbf{A} \times \mathbf{A}$ onto \mathbf{A} such that $\sigma(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$ and denote by σ^{*} its dual mapping. We mean by $\mathrm{I}(\mathrm{X} \cdot \mathrm{Y})$ the Kronecker index of $\mathrm{X} \cdot \mathrm{Y}$.

Lemma 1. Let C be a cycle of dimension $2(n-r)$. Then

$$
\mathrm{I}\left(\mathrm{Z}_{i_{1} \ldots i_{r}} \cdot \sigma\left(\mathrm{C} \times \mathrm{Z}_{j_{1} \ldots j_{r}}\right)\right)=\mathrm{I}\left(\mathrm{C} \cdot \sigma\left(\mathrm{Z}_{i_{1} \ldots i_{r}} \times \mathrm{Z}_{j_{1} \ldots j_{r}}\right)\right)
$$

Proof. Putting

$$
\mathbf{C}=\sum_{l_{1}<\cdots<2_{n} n-2 r} \mathbf{a}_{l_{1} \cdots l_{2 n-2 r}} \mathbf{Z}_{l_{1} \cdots l_{2 n-2 r}}
$$

we get

$$
\begin{aligned}
& \sigma\left(\mathbf{C} \times \mathbf{Z}_{j_{1} \ldots j_{r}}\right)=\sum_{l_{1}<\cdots<l_{n-2 r}} \sigma\left(\mathbf{a}_{l_{1} \ldots l_{2 n-2 r}} \mathbf{Z}_{l_{1} \ldots l_{2 n-S r}} \times \mathbf{Z}_{j_{1} \ldots j_{r}}\right) \\
& =\sum_{l_{1}<\cdots<l_{2 n-2 r}} \mathbf{a}_{l_{1} \ldots l_{2 n-2 r}} \varepsilon_{l_{1} \ldots 2_{2 n-2 r} j_{1} \ldots j_{r}}^{n_{1} \ldots n_{2 n-r}} \mathbf{Z}_{h_{1} \ldots l_{2 n-r}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& I\left(Z_{i_{1} \ldots i_{r}} \cdot \sigma\left(\mathrm{C} \times Z_{j_{1} \ldots j_{r}}\right)\right)=I\left(\sum_{l_{1}<\ldots<l_{\Sigma n-\Omega r}} a_{l_{1} \ldots l_{\Sigma n-\Omega r}} \varepsilon_{l_{1} \ldots l_{2 n-2 r} j_{1} \ldots j_{r}}^{h_{1} \ldots Z_{i_{1}} \ldots i_{r}} Z_{h_{1} \ldots h-r} \ldots\left(h_{2 n-r}\right)\right. \\
& =\sum_{l_{1}<\cdots<l_{2 n-2 r}} a_{l_{1} \ldots l_{2 n-2 r}} \varepsilon_{l_{1} \ldots l_{2 n-2 r} j_{1} \ldots j_{r}}^{h_{1} \ldots h_{2 n-r}} \varepsilon_{i_{1} \ldots i_{r} h_{1} \ldots h_{2 n-r}}^{I_{2}} \\
& =\sum_{l_{1}<\cdots<l_{2 n-2 r}} \boldsymbol{a}_{l_{1} \ldots l_{2 n-2 r}} \varepsilon_{i_{1} \ldots i_{r} l_{1} \ldots l_{2 n-2 r} j_{1} \ldots j_{r}} \text {. }
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \mathrm{I}\left(\mathrm{C} \cdot \sigma\left(\mathrm{Z}_{i_{1} \ldots i_{r}} \times \mathrm{Z}_{j_{1} \ldots j_{r}}\right)\right)=\mathrm{I}\left(\sum_{l_{1}<\cdots<l_{2 n-3 r}} \mathbf{a}_{l_{1} \ldots l_{2 n-2 r}} \mathbf{Z}_{l_{1} \ldots l_{2 n-2 r}} \varepsilon_{i_{1} \ldots i_{r}}^{m_{1} \ldots j_{1} \ldots j_{r}} \mathbf{Z}_{m_{1} \cdots m_{2 r} r}\right) \\
& =\sum_{c_{1}<\cdots<2_{2}-2 r} a_{l_{1} \ldots l_{2 n-2 r}} r_{i_{1} \ldots i_{r} j_{1} \ldots j_{r}}^{m_{1} \ldots m_{2}} \varepsilon_{l_{1} \ldots l_{2 n-2 r}}^{1 \ldots m_{1} \ldots m_{2 r}} \\
& =\sum_{l_{1}<\cdots<l_{2 n-2 r}} \mathbf{a}_{l_{1} \ldots l_{2 n-2 r}} \varepsilon_{i_{1} \ldots l_{r}}^{1 \ldots l_{1}} l_{1} \ldots 2_{2 n-2 r} j_{1} \cdots j_{r} .
\end{aligned}
$$

This proves our Lemma.
Theorem 1. Let C be a cycle of type $(n-r, n-r)$ on \mathbf{A}. Then there exist matrices $\Lambda_{0}(\mathrm{C}), \Lambda_{1}(\mathrm{C}), \ldots, \Lambda_{\left[\frac{r}{2}\right]}(\mathrm{C})$ such that

$$
\left.\begin{array}{rl}
& \left(\begin{array}{lll}
\Lambda_{0}(\mathrm{C}) & & \\
& \Lambda_{1}(\mathrm{C}) & \\
& \ddots & \\
& \Lambda_{\left[\frac{r}{2}\right]}
\end{array}\right)\left(\begin{array}{l}
\Omega_{\Omega^{(r, 0)}}^{(r--2,2)} \\
\vdots \\
\left.\Omega_{\left(r-2\left[\frac{r}{2}\right]\right.}, 2\left[\frac{r}{2}\right]\right)
\end{array}\right.
\end{array}\right) .
$$

Moreover $\Lambda_{0}(\mathrm{C})=0$ implies $\Lambda_{1}(\mathrm{C})=\cdots=\Lambda_{\left[\frac{r}{2}\right]}(\mathrm{C})=0$. If C is not of type $(n-r, n-r)$, then there exists no such a matrix $\Lambda_{2}(\mathrm{C})$.

Proof.

$$
\begin{aligned}
& \Omega^{(n-2 \nu, n-r+2 \nu)}\left(\mathrm{I}\left(\mathrm{C} \cdot \sigma\left(\mathrm{Z}_{i_{1} \ldots i_{r}} \times \mathrm{Z}_{j_{1} \cdots j_{r}}\right)\right)\right) \\
& =\left(\int_{\mathrm{z}_{j_{1} \ldots j_{r}}^{\dagger}} \mathrm{dz}_{l_{1}} \ldots \mathrm{dz}_{{l_{n-2}}^{2}} \mathrm{~d} \overline{\mathrm{z}}_{k_{1}} \ldots \mathrm{~d} \overline{\mathrm{z}}_{k_{n-r+2 \nu}}\right)\left(\mathrm{I}\left(\mathrm{Z}_{i_{1}, i_{r}} \cdot \sigma\left(\mathrm{C} \times \mathrm{Z}_{h_{1} \cdots h_{r}}\right)\right)\right) \\
& =\left(\int_{\sigma\left(\mathrm{C} \times \mathrm{z}_{\left.j_{1} \ldots j_{r}\right)}\right.}^{\mathrm{dz}_{l_{1}}} \ldots \mathrm{~d} \mathrm{z}_{l_{n-2 \nu}} \mathrm{~d} \overline{\mathrm{z}}_{k_{1}} \ldots \mathrm{~d} \overline{\mathrm{z}}_{k_{n-r}}{ }^{2 \nu}\right) \\
& =\left(\int_{\mathrm{C} \times \mathrm{z}_{j_{1} \ldots j_{r}}} \sigma^{*}\left(\mathrm{dz}_{{l_{1}}_{1}} \ldots \mathrm{~d} \mathrm{z}_{l_{n-2 \nu}} \mathrm{~d}_{\bar{z}_{k_{1}}} \ldots \mathrm{~d} \overline{\mathrm{z}}_{k_{n-r+2 \nu}}\right)\right) \\
& =\left(\int_{\mathrm{c} \times \mathrm{z}_{j_{1} \ldots j_{r}}}\left(\mathrm{du}_{l_{1}}+\mathrm{dv}_{l_{1}}\right) \cdots\left(\mathrm{du}_{l_{n-2 v}}+\mathrm{dv}_{l_{n-2 v}}\right)\right. \\
& \left.\left(d \bar{u}_{k_{1}}+d \bar{v}_{k_{1}}\right) \cdots\left(d \bar{u}_{k_{n-r+2 \nu}}+d \bar{v}_{k_{n-r+2 \nu}}\right)\right),
\end{aligned}
$$

where $\left\{\mathrm{du}_{1}, \ldots, \mathrm{du}_{n}\right\},\left\{\mathrm{dv}_{1}, \ldots, \mathrm{dv}_{n}\right\}$ are the systems of the differentials on the first and the second component of $\mathbf{A} \times \mathbf{A}$ corresponding to $\left\{\mathrm{dz}_{1}, \ldots, \mathrm{dz}_{n}\right\}$ on \mathbf{A}.

Since C is of type ($n-r, n-r$),

$$
\int_{\mathrm{c}} \mathrm{du}_{l_{1}} \ldots \mathrm{du}_{l_{n-r \pm s}} d \bar{u}_{k_{1}} \ldots \mathrm{~d} \bar{u}_{k_{n-r}}=\mathrm{s}=0 .
$$

Putting

$$
b_{i_{1} \cdots i_{n-r}, s_{1} \cdots j_{n-r}}=\int_{\mathrm{c}} \mathrm{du}_{i_{1}} \ldots d u_{i_{n-r}} d \bar{u}_{j_{1}} \ldots d \bar{u}_{j_{n-r}},
$$

we get

This shows that

$$
\Omega^{(n-2 \nu, n-r+2 \nu)}\left(\mathrm{I}\left(\mathrm{C} \sigma\left(\mathrm{Z}_{i_{1} \ldots i_{r}} \times \mathrm{Z}_{j_{1} \ldots j_{r}}\right)\right)\right)=\Lambda_{\nu}(\mathrm{C}) \Omega^{(r-2 \nu \nu, 2 \nu)}
$$

with a matrix $\Lambda_{\nu}(\mathrm{C})$ whose elements are $\mathrm{b}_{l_{1} \cdots l_{n-r}, k_{1} \cdots k_{n-r}}$ or zero. On the other hand

$$
\begin{aligned}
& \left(d u_{1}+d v_{1}\right) \cdots\left(d u_{n}+d v_{n}\right)\left(d \bar{u}_{k_{1}}+d \bar{v}_{k_{1}}\right) \cdots\left(d \overline{\mathrm{u}}_{k_{n-r}}+d \bar{v}_{k_{n-r}}\right) \\
& =\sum_{\left\{a_{1} \ldots a_{n}\right\} \cdots(1 \ldots n\}} \pm b_{x_{1} \ldots s_{n-r}, k_{1} \ldots k_{n-r}} \int_{z_{j_{1}} \ldots \xi_{r}} \operatorname{dv}_{a_{n-r}} \ldots \mathrm{dv}_{a_{n}} .
\end{aligned}
$$

Hence all $\mathrm{b}_{l_{1} \ldots l_{n-r}, k_{1} \ldots k_{n-r}}$ appear in $\Lambda_{0}(\mathrm{C})$. This shows that $\Lambda_{0}(\mathrm{C})=0$ implies $\Lambda_{1}(\mathrm{C})=\cdots=\Lambda_{\left[\frac{r}{2}\right]}(\mathrm{C})=0$: If C is not of type $(n-r, n-r)$, then there exists a differential
$\mathrm{d}{\overline{l_{1}}} \ldots \mathrm{~d} \mathrm{z}_{k_{n-r+s}} \mathrm{~d} \overline{\mathrm{z}}_{k_{1}} \ldots \mathrm{~d} \overline{\mathrm{z}}_{k_{n-r-s}}$ with a non-zero period on C.
On the other hand

$$
\begin{aligned}
& \int_{\mathrm{c} \times \mathrm{z}_{j_{1} \ldots j_{r}}}\left(\mathrm{du} \mathbf{u}_{j_{r}}+d \mathrm{v}_{1}\right) \cdots\left(\mathrm{du}_{n}+\mathrm{dv}\right)\left(d \overline{\mathrm{u}}_{k_{1}}+\mathrm{d} \overline{\mathrm{v}}_{k_{1}}\right) \cdots\left(\mathrm{d} \overline{\mathrm{u}}_{k_{n-r}}+\mathrm{d} \overline{\mathrm{v}}_{k_{n-r}}\right) \\
& = \pm \int_{\mathrm{C}} \mathrm{du}_{l_{1}} \ldots d u_{l_{n-r+s}} d \bar{u}_{k_{1}} \ldots d \bar{u}_{k_{n-r-s}} \\
& \int_{z_{j_{1}} \ldots v_{r}} \mathrm{dv}_{l_{n-r+s+1}} \ldots \mathrm{dv}_{l_{n}} \mathrm{~d}_{\bar{v}_{n_{n}-r-s+1}} \ldots \mathrm{~d} \overline{\mathrm{v}}_{k_{n-r}} \pm \ldots .
\end{aligned}
$$

The type of $\mathrm{dv}_{l_{n-r+s+1}} \ldots \mathrm{dv}_{l_{n}} \mathrm{D}_{\bar{v}_{n-r-s+1}} \ldots \mathrm{dv}_{k_{n-r}}$ is $(r-s, s)$.
This proves the last assertion.
Lemma 2. Let P be a principal matrix of Ω and let $\mathbf{P}^{(r)}$ be the r-th compound matrix of P . Then there exists a matrix B such that $\mathrm{B} \Omega^{(r, 0)}=\Omega^{(n, n-r)} \mathrm{P}^{(r)}$.
Proof. Since P is a principal matrix of Ω, there exists a nonsingular matrix B_{1} such that

$$
\left(\frac{\Omega}{\Omega}\right) \mathrm{P}^{-1}\left(\frac{\bar{\Omega}}{\Omega}\right)=\left(\begin{array}{cc}
\mathrm{B}_{1} & 0 \\
0 & \bar{B}_{1}
\end{array}\right) .
$$

On the other hand

$$
\left(\frac{\Omega}{\Omega}\right)^{t} \overline{\left(\frac{\Omega^{(n, n-1)}}{\Omega^{(n, n-1)}}\right)}=\left|\left(\frac{\Omega}{\Omega}\right)\right| \mathrm{E} .
$$

Hence we get

$$
\left(\frac{\Omega^{(10)}}{\Omega^{(10)}}\right) \mathrm{P}^{-1}\left(\frac{\Omega^{(n, n-1)}}{\Omega^{(n, n-1)}}\right)^{-1}=\left(\begin{array}{cc}
\mathrm{B}_{1} & 0 \\
0 & \mathrm{~B}_{1}
\end{array}\right) .
$$

Taking r-th compound of the both sides, we get

$$
\Omega^{(r, 0)} \mathrm{P}^{(r)-1}=\mathrm{B}_{1}^{(r)} \Omega^{(n, n-r)} .
$$

From Theorem 1 and Lemma 2 we have
Theorem 2. Let \mathbf{A} be an abelian variety of dimension n defined by a period matrix Ω. Let P be principal matrix of Ω and let $\mathrm{P}^{(r)}$ be the r-th compound matrix of P. Then the module of homology classes of cycles of type ($n-r, n-r$) is isomorphic with the module of all rational matrices M satisfying

1) $\Omega^{(r, 0)} \mathrm{M}=\Lambda \Omega^{(r, 0)}$ with a matrix Λ,
2) $\mathrm{P}^{(r)} \mathrm{M}=\left(\mathrm{b}_{i_{1} \ldots t_{r}, j_{1} \ldots j_{r}}\right)$ is integral,
3) $\mathrm{b}_{i_{1} \ldots i_{r}, j_{1} \ldots j_{r}} i_{1}<\cdots<i_{r}, j_{1}<\cdots<j_{r}$ are skew symmetric on $\left\{i_{1} i_{2} \ldots i_{r} j_{1} \ldots j_{r}\right\}$.
