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1. Let f(x) be an integrable function with period 27 and s,(x)
be the nth partial sum of Fourier series of f(x).
Recently, S. Izumi® has proved the following theorem:
If f(x) belongs to the Lip a(0<a=<1) class, then the series®
3 5@~ @)/ (log )"
converges uniformly, where B=1—2a and v>1 or >2 according as
0<a<l/2 or 1/2<a<1.
The object of this paper is to prove the following theorem,
which may be partially more general than the above theorem:
Theorem 1. If f(x) belongs to the Lip a(0<a<1/2) class then
the series
S 18,(@)—f () |F
,,,21‘ n° (log n)*
converges uniformly, where §=1—ka, y>1, 1>ka, and k>0.
Theorem 2.» If f(x) belongs to the Lipa class and if ka=1,
then the series
Sy |8, (@)—f (@) IF
= (log n)*
converges uniformly, where +>1—a)/a and k=>2.
2. For the proof of the theorem we need the following lemma:
Lemma 1. Under the condition of Theorem 1, we have

(2.1) S118/@)—f @) =00 ),
uniformly.
Lemma 2. Under the condition of Theorem 2, we have

3118,2)—f(@) P=0([log n]*),
uniformly.
Proof of Lemma 1. We have

n 5 1/%
I1=(3 5@~ f@F)
1) S. Izumi: Proc. Japan Acad., 31, 257-260 (1955).
2) We suppose 1/(logn)=1 for n=1.
3) This theorem was suggested by Mr. I. Oyama.

4) Cf. A. Zygmund: Trigonometrical series, p. 238, and T. Tsuchikura: Mathe-
matica Japonicae, 1, 1-5 (1949).
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(2.2> :{ n‘ Sln(l/+ 1/2)tdt }l/k
v=1lgr o 2sin t/2 |
n | 1/n k) 1/% n | T k) 1/%
LB
v=1|aqr o ‘ v=1.91 i [
:[1+Iza

say, where @,(t)=p#)=f(x+t)+f(@—t)—2f(x). Then

I{“:O{é »k( f ”"tddt)"}:@(nl-m.

For the case k>2, by the Hausdorff-Young inequality we have
@:0{(]"'1 ‘Pt(’?) r dt)” } A+ 1/ =1),
1/n

2.8) :o{( m [ "t"’“*—wdt)w}’
1/n

where, by the assumption 1>ka, k'(a—1)3=—1.
Hence we get
IZIO(nl—d—l/k'):O(nl/k—a).

Thus we have Lemma 1 for the case £=2. Let us suppose that
0<e<?2, k=2, then by the Holder inequality and by the assumption
a<1/2,

n n e/k

S s@)—f @) =3 8@ —F @)1 ) ot

_O(ncl kd)e/k) nl—e/k O(n —ed)
Hence Lemma 1 is also established for the case 0<k<2.
Proof of Lemma 2. By the above argument, 7,=0(1) and by

(2'3) 7T 1/ ol 1/%
neoff [ a) o [va)”)
1/n 1/

=0[ (log n)** ].
Therefore I*==0([log n]**)=0([log n]*"), which completes the proof
of Lemma 2.

3. Proof of Theorem 1. By the Abel transformation, we have

S 15D F @) PS5 1w tog my)- 33 8,0)~ £ @)

=1 n’(log n)T
1
N5(lo - N 5=

:o{’:z;:nl—kv[nw (log n)*]} + O{N“"’/[Né'(log NY?, by Lemma 1,
:0{1:2: 1/n(log ny"] + 0{1 [(log N)T} —0Q).

Thus we have Theorem 1.
Proof of Theorem 2. By the same way we have

Z‘. Fsy(@)—f (@) I*
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> ]’s"%l‘;ﬁf) P S ar1/t0g w1 3 15,0 — @) 1

+ o 1y S H@ =@

- O{NZ (log n)*~*/[n(log n)™*"* ]} +0 {(log Ny-/(log N)‘}

'N—1
:O{Z‘I/En(logn)“‘/“”]}+ O{l/(log N)m—l/aH}
=0(1),
since r—1/a+1>0, which completes the proof of Theorem 2.
4. Next we shall prove the following
Theorem 3. If
. - — . Ly
D) F@t-f@1=0{ 1t/ (loo ) ],
uniformly, then the series

S 15,(@) — £ @) i’
converges uniformly, where 1/2>a>0, §=1—ka, 1>ka, k>0, and
v>1/k.
Theorem 4. If f(x) satisfies (4.1) and if ka=1, then the series

ni:‘ I Sn(x)*f(a» ]k

converges uniformly, where k=2 and 1+k(y—1)>0.

The proof of Theorem 8 may be done by the following lemma,
as in the proof of Theorem 1.

Lemma 3. Under the assumption of Theorem 3, we have
(4.2) Z | 8,(x) —f (&) |*=O0[n'~*/(log n)*"].

Proof of Lemma 3. If (4.2) is established for %>2, then it
holds a fortiori for every 0<k<2. Hence we may suppose k=>2
(cf. Proof of Lemma 1). We divide I, which is denoted by (2.2),
into following three parts;

=N,

i

10" &y 1/% n | k) 1/k
FHE L

1 7T-— ‘JJJ

—-II+I’+IS,
where 0<pu<min. {1, (1/k—a)}. By the assumption, we have

=ofs] [/ (tog ) = 0rm10g ]

and, by the Hausdorff-Young inequality,

- 1/m™ (t) 14 1/k': { 1/n oty / _]; v }1//.:’
¢ 0{4 ll/dt} 03{7,; ’ Uk/ (lOg t) dt

. v 1 ’
=0{m[4 erar]
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= { 1
(log n)*
By the same way,

Iazo{lf"

/™

n“““/’“'} =0 {n‘/’“““/(log n)“f}.

% 17k
dt} — 0.

Summing up above estimations, we get the required.
Now we prove Theorem 4. By the assumption, we easily see
that
It=0[1/(log n)*]

Igzo{ f " e /(10g _1_ )k»rdt}w

1/n

=L i =0

for k'oy=vk/(k—1)>1.
Hence we get the theorem.

5. Our theorems stated above may be extended. For example,
we have

Theorem 5. If
[\ gy P du=0Gt),  uniformiy,
o

and

then the series
5 1@ —f @ F
=1 n"(log n)*
converges uniformly, where 8=1—2a>0 and v>1.
Theorem 6. If f(x) belongs to the Lip («a, p) class, then the series
5 1 5.0)—f (@) I
n=1 n’(logn)T
converges almost everywhere, where k>0, p>1, p>k, 1>a>0, 6=
1—ka, and v>1.
Theorem 7. If

([T 1r@rt—r@1rdz)” =0[ 121/ (tog li—l)]

0
then the series 5@ —f @) P
2 sp@)—f (@

converges almost everywhere, where k>0, p>1, p>k, 1>a>0, y>1/k,
and §=1—Fka.

The proof of Theorem 5 is similar to that of Theorem 1,> and
the proof of Theorems 6 and 7 runs similarly as in the theorem of
S. Izumi.* Hence we omitt the detail.

5) Cf. G. Alexits: Acta Szeged, 3, 32-37 (1927).
6) S. Izumi: To appear.




