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144. On the Unstable Homotopy Groups of Spheres

By Tsuneyo YAMANOSHITA
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1955)

Recently H. Toda has determined the homotopy groups of
spheres r+(S) (r .__<_ 13). The object of this note is to report on
the results on the same subject which the author has obtained
through computation on the cohomology algebras H*(S, n+i; Z).
Our method allows as to verify Toda’s results on he structure of
these groups except for a point which will be indicated at the end
of he note.

Denote by (X, i) a topological space such that (X, i)
for ji and v(X, i)=0 for j<i. Then we have the Hurewicz
isomorphism

H,(X, i; Z)=(X, i)=(X) (i 2).
The p-componen of H(X, i; Z), and herefore hat of (X)are
determined by the cohomology groups H(X, i; Z), H+(X, i; Z,) and
the cohomological relations between them.

For example let X=S. in the fibering S/(S, 4)=K(Z, 3), the
mod 2 cohomology algebra H*(Z, 3;Z:) of he Eilenberg-MacLane
space K(Z, 3) is known to be the polynomial algebra P[us, Sq
(i=1, 2,...),) and the consideration of the spectral sequence
associated with he above fibering gives

H*(S, 4; Z:)=Pgs A (Sqs),

the transgression image of s being rs=Squ (dim s=4).
Considering the fibering (S, 3 + i)/(S, 3 + i + 1)=K(+(S), 3 + i)

successively or i-0, 1,..., we obtain %he following table of 2-
components of the homotopy groups of 3-sphere:

((z)=z), (z)=z, (z)=z, (z)=z,
()=z:, (s)=, ,(z)= o, o(S)=o,
(,) z, (,) z+z, (,) z+z,
,(z")=z,+z+ z:, =,(z")=z+,
Az") z:, Az.) z, ,,(z,) z+ z:,
*:o(Z ) z, + z:+ z:, =:(z,) z+ + z:.

Similar procedure is applicable also for p2; in view of
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H*(Z, 3; Z)- A (vs, ... 3vs(i--O, 1,...))
)P_33-1. 31v(i-O, 1,...)

we obtain
H*(S, 4; Z,)-P[t]@ A (At),

where dim t-2p and rt:vs. (Therefore, he p-component of
:,(S) is Z (p 2).) Here is the coboundary operator associated
wih the exac% sequence

By repeated application of our method we can obtain the follow-
ing %able of 3-components "+(S") at least for i 18:

(S)-0 except for he following cases (j21).

")- z,, "=Az,)- z,.
Of course we can easily verify Moore’s Cheorem*) on the p-

components of (S).
Furthermore by using theorems on the Freudenhal suspension,

we can verify %he results of H. Toda on the group s%ructure of he
homotopy groups of spheres. We have obtained a different result
from Toda’s on ::(S), namely :(S)-Z. The result announced
by Toda seems to be a misprint. In all other cases, we have
obtained Che same results as Toda.

Our method is applicable also for calculation of homotopy groups
of Lie groups and some homogeneous spaces.
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