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3. Closed Mappings and Metric Spaces

By Kiiti VORITA and Sitiro HANAI
(Comm. by K. KUNUG, M.;.A., Jan. 12, 1956)

A mapping of a topological space X onto another topological
space Y is said to be closed if the image of every closed subset of
X is closed in Y. Concerning the problem,: "Under what condition
is the image of a metric space under a closed continuous mapping
metrizable ? ", several interesting results have been obtained recently
by G. T. Whyburn 6_, A. V. Martin 3], and V. K. Balachandran
[1. In lae present note, we shall give an answer to this problem
by proving that the image space Y of a metric space X under a
closed continuous mapping f is metrizable if and only if the boundary
,f-(y) of he inverse image f-(y) is compact for every point y of
Y. A problem raised by Balachandran _1 J will also be solved.

1. We shall prove
Lemma 1. Let f be a closed continuous mapping of a normal

T-space X onto a topological space Iz. If Y satisfies the first count-
ability axioms, then f-(y) is counably compact for every point y

of Y.
Proof. Le% y be any point of Y. By he first countability

axiom, there exists a countable collection [Vli--1, 2,... of open
neighborhoods of y such hat for any open neighborhood U there
can be found some V with VU.

Suppose that f-(y) is not countably compact. Then there
exist a countable number of points x, i--l, 2,... of f-(y) such hat
[x} has no limit point. Then by he normality of X we can find
a cliscree collection G} of open ses of X such hat

xeG for i=1,2,.-.; GG-0 for i3"
and [G} is locally finite.

Since each point x belongs o the boundary 3f-(y) of f-l(y),
.here exists a point x’ of X such that

x f-(y), x e G
Then [x;]i--1, 2,... is locally finite in X and hence the set C

consisting of all points x’, i--1, 2, is closed. Therefore if we put
H=Y-f(C), H is an open set of Y. Since x’f-(y), we have
y e H. Hence there exists some V such that VH. This implies
%hat we have f(x) V for some i. On %he other hand we have
chosen the point x so that x e f-(V). This is a contradiction.
Thus Lemma 1 is proved.
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2. We shall now establish he following theorem.
Theorem 1. Let f be a closed continuous mapping of a metric

space X onto a topological space Y. In order that Y be metrizable
it is necessary and sufficient that the boundary f-(y) of the inverse
image f-l(y) be compact for every point y of Y.

Proof. Since he necessity is an immediate consequence of
Lemma 1, we have only o prove the sufficiency.

(i) Let f-(y) be compact for each point y of Y. We shall
define an open set L(y) as follows:

the interior of f-(y), if f-(y)O,L(y)
f_ (y) P, if f (y) O,

where p is an arbitrary point of f-(y). We put
Xo-X-L, L= [L(y) Iy Y}.

Then Xo is a closed subset of X. If we denote by q the inclusion
map of Xo into X (that is, cp(x)=x for xeXo), then g=fq is a
closed continuous mapping of Xo onto Y such that

f-(y), if f-(y) 4 O,g-l(y)_.
p,, if )f-l(y)_. 0.

Hence g-(y) is compact for every point y of Y.
(ii) By (i) we may and shall assume that f is a closed con-

tinuous mapping of a metric space X onto Y such hat f-(y) is
compact for every point y of Y. Y is clearly a T-space.

Let , be locally finite closed covering of X which consists
of sets of diameter <l/i. Let us put =f()= [f(M) IM
Since for each point y of Y f-(y) is compact, here exists an open
set G containing f-(y) such that G intersects only finitely many
elements of ,. If we put H=Y-f(X-G), we have y e H, f-(H)
G, and hence H intersects only finitely many elements of ,.
This shows that , is a locally finite closed covering of Y.

Let V be any open neighborhood of y. Then f-(y) f-(V).
Since f-(y) is compact, %he distance between f-(y) and X-f-(V)
is positive and hence we have S(f-(y), ,)f-(V) for some i, where
S(A, ) means he union of the sets of , which intersect A.
Therefore we have S(y, ,)V for some i.

In the previous paper [_5 the following metrizability condition
was obtained:

In order that a T-space be metrizable it is necessary and suf-
ficient that there exists a countable collection {9,[i=1, 2,...} of
locally finite closed coverings of the space such that for any neigh-
borhood U of any point x there exists some $, satisfying t.he con-
dition S(x, 9) U.

Therefore Y is metrizable. This completes our proof.
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lary o Theorem 1; indeed the pa.rt (ii) of the above proof of Theorem 1
is nothing but a proof of his t.heorem.

Theorem 2. Let f be a closed continuous mapping of a metric
space X onto a topological space Y. If the inverse image f-l(y) is
compact ,for every point y of Y,i) then Y is metrizable.

We shall give another proof of this theorem by virue of the
following theorem.

Theorem 3. Let f be a closed continuous mapping of a Tl-space
X onto a topological space Y. Then if X is normal or collectionwise
normal, so also is Y. Furthermore, in case f-(y) is compact for
every point y of Y, if X is paracompact and normal, so also is Y.

Proof. (i) Let IF,} be a discrete collection of closed sets
in Y. Then f-(F)} is clearly a discrete collection of closed sets
in X. Let X be collectionwise normal; then there exists a system
of disjoint oDen sets G of X such hat f-(F)G for each
If we pu H-Y-f(X-G), we have f-I(F)f-(H)G and
hence H (] H-- 0 for a. This proves that Y is collectionwise
normal. The proof for the case of normality is now obvious from
he above argument.

(ii) Let X be paracompact and normal, and let f-(y) be
compact for every point y of Y. As in the proof of Theorem 1
we may assume that f-(y) is compact for each point y.

Let ( be any open covering of Y. Then (C)-[f-(G)IG e (} is
an open covering of X, and there exists a locally finite closed
covering of X which is a refinement of (C). If we put
M e }, is a locally finite closed covering of Y and is a refine-
ment of (, as is shown in (ii) of he proof of Theorem 1. Since
Y is normal, by a heorem of E. Michael [4 Y is paracompact.

Proof of Theorem 2. Since X is paracompact and normal, Y
is paracompact and normal by Theorem 3, so that Y is fully normal.
Let O)(x) (n--l, 2, ) be an open sphere with the center x and
he radius 1/n for each poin x of X. For any point y of Y, we
have O(x) f-(y). Let G(y) Y-f(X- [J O(x)); then

G()(y) is an open set containing y since f is closed and continuous.
Let (- G)(y) y e Y (n- 1,2,. .); hen each (, is a normal cover-
ing of Y, since Y is fully normal. For the proof of the metrizability
of Y, we have only to prove that for all points y
n-l, 2,... is a basis for neighborhoods of y.

Let y be any point of Y and U any open neighborhood of y.

1) In V_2] this condition was left out in the statement of the theorem, and the
proof there contains an error, but it can be corrected.
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Then, since f-(y) is compact, g[f-(y),X-f-(U)]--dO where
is the metric for X. Let m be a positive integer such that 1/m<d/2
and let 1 be a positive integer such that 1/l<g[f-(y), X-f-(G((y))],
l >m. Then y GC*(y’) implies y’ G((y).

In fact, suppose on the contrary hat y’ GC.(y); then f-(y’)
X-f-I(G(y)). Hence

(.) lll<pf-(y), X-f-(GC(y)) pf-(y), f-(y’).
Since y e G(*(y’), f-(y) cf-(G*(y’)) O*(x). Hence for any point

e f-(y), there exists a point ’ such that e 0*(’) and x’ e f-’(y’).
Therefore pf-(y), f-(y’)] 1/1, contrary to (.).

We shall prove that S(y,)U. Let y" be any point of S(y,
(,); then there exists Gc.(y’) with some y’ such that y"e G*(y’)
and y e G*(y’). Then y’ e G(y). Hence for any point x e f-(y"),
there exist points x" and x’" such that x e O*(x"), x" e f-(y’),
x" e O’(x’’) and x" e f-(y). Then p(x,x"’) 1/l+l/m<2/m<d.
Hence x e f-(U), so that y" e U. Therefore IS(y, ()ln=l, 2,-..
is a basis for neighborhoods of y. This completes our proof.

4. By combining Theorem 1 with Lemma 1 we obtain at once
the following theorem, which was essentially proved by G. T.
Whyburn [6 for the case where X is separable.

Theorem 4. Let f be a closed continuous mapping of a metric
space X onto a topological space Y. If Y satisfies the first countability
axiom, then Y is metrizable.

In case A is a closed subset of a metric space X, the space
obtained from X by contractina A to a point is the image of X
under the natural mapping which is a closed mapping. Therefore
the image of a metric space under a closed continuous mapping is
not always metrizable.

Thus a problem raised by Balachandran 1] is answered by
Theorems 1 and 4.

5. As is easily shown (cf. [1, Lemma 1]), if a T-space X
satisfies the firs countability axiom, so also does the image of X
under an open continuous mapping. Hence we obtain the following
theorem of Balachandran [1] from Theorem 4.

Theorem 5. The image of a metric space under any closed, open,
continuous mapping is metrizable.

6. On Che basis of Theorem 1 we have
Theorem 6. Let f be a closed continuous mapping of a metric

space X onto another metric space Y. If X is separable or locally
compact, so also is Y.

Proof. By Theorem 1, f-(y) is compact for every point y
of Y. By he closed continuous mapping g of Xo onto Y which
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was defined in the part (i) of the proof of Theorem 1, our theorem
for hese two properties is reduced to theorems in the previous
paper [2; of course the proof in [2 can be modified easily so as
o yield a direct proof for our case.
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