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72. On a Theorem of Ugaheri

By Masanori KISHI
Mathematical Institute, Nagoya University
(Comm. by K. KUNUGI, M.J.A., May 15, 1956)

1. In his paper [6], Ugaheri investigated the potentials in m-
dimensional euclidean space R™, with respect to a kernel function
@(r) which is positive, continuous and monotonously decreasing at
r>0, and he proved that these potentials satisfy the following maxi-
mum principle: if the potential of a positive measure with compact
carrier is nhot greater than M on the carrier of the measure, then
it is <kM everywhere in R™, where %k is an absolute constant
depending only upon the space B™. Furthermore, using this maximum
principle, he proved Evans-Vasilesco’s theorem for the potentials
with respect to @(r).

In the present note we shall consider the potentials in a locally
compact space £ and prove that the generalized form of the maximum
principle of Ugaheri is equivalent to the continuity principle with
certain additional condition, where the continuity principle means
that, if the potential of a positive measure, considered as a function
on the carrier of the measure, is continuous, then it is also continu-
ous in the whole space.

2. We assume that there is given a real-valued function @(p, q),
defined in the product space 2x£ and satisfying the following
conditions:

1° @(p, q) is positive, continuous in (p, ¢) except for the diagonal
set of 2 x 2 and symmetric, that is, &(p, 9)=2(q, p):

2° At every point » of £, lim @(p, @)=+ c and, in case £ is
a>p
not compact, lim @(p, ¢)=0, where » is the Alexandroff point.
Qrw

The potential U*(p) of a positive measure p is defined by the
Radon-Stieltjes integral

U= [0, q) dula).

We assume the following condition:
3° @(p, q) satisfies the energy principle in the sense of Ninomiya
[4].
Let K be a compact subset of 2, and denote by Mi the family
of all positive measures on K which are of total measure 1. We put
W(K)= inf Jf U*dy,

pe‘nb}{
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and define the capacity ¢(K) of K as follows: when W(K) is finite,
c¢(K)=1/W(K), and when W(K)=+ o, ¢(K)=0. For every subset
A of 2 we define interior capacity c¢(A4) by supc(K), taken with
respect to compact KC A. In what follows we assume the following
condition:

4° Everv open set G ¢ is of positive interior capacity.

We say that a property holds nearly everywhere in £ if it holds
at each point of £ except at the points of a set of interior capacity
zero (ef. Cartan [2] and Choquet [8]).

It is well known that, if B, (n=1,2,-..) are Borel sets and B
is the union of B,, then ct(B)gi‘lci(B,,).

We denote by € the family of all positive measures of finite
energy. By assumption 3°, we can define a strong topology in € by
means of the square root of energy integrals. Modifying Cartan’s
proof [2], we can easily show

Lemma 1. Let u and v be measures of G, € be a positive number

and B be a set of points p of 2 such that U (p)—UYp)>e. Then
cL(B)éél-z-»llp—qu, where ||p—v||? is the energy of u—v.

3. We generalize the maximum principle of Ugaheri as follows:
let K be a compact subset of 2; for any measure p of €, U*p) <

ksu}y U*(q) at every point p of 2, where & is a constant depending
€

only upon K and €; means the subfamily of €, each measure of
which hag its carrier in K.

We shall prove

Theorem. The generalized maximum principle of Ugaheri is
equivalent to the continuity principle and the following condition:

(%) ©f the potential of a positive measure with compact carrier s
bounded on the carrier of the measure, then it is also bounded in 2.

4. In this section we shall prove that the continuity principle
and the condition (x) are sufficient for the generalized maximum
principle of Ugaheri. At first we prove some propositions (Lemmas
2, 83 and 4) under the assumption of the continuity principle.

Lemma 2. Let K be a compuct set and p be an element of €.
Then we can find a sequence {u.} of positive measures with the
Sollowing properties: 1° {u,} converges to u both vaguely and strongly,
2° the potentials Ut are all continuous in 2, and 3° {U¥(p)} converges
inereasingly to U%(p) at every point p of L.

Proof. As U%(p) is a measurable function, we can take a
sequence {K,} (n=1,2,---) of compact sets such that u(Q—K,)<1l/n
and U* is continuous on each K,. We may suppose that {K,} is
increasing. Let p, be the restriction of x4 to K,. Then U™ is
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continuous on K,,*> whence, by the continuity principle, U"» is
continuous in 2. As {K,} is increasing, {U*#} is also increasing,
and lim U¥(p) <U*p) at every point p of 2. Let f(p) be a non-

negative continuous function with compact carrier and M be the
maximum value of f(p). Then

0= [fdu— [ fdum= [ fdu<Mu2@—K.)<Mn.

Q—I{',n !
Therefore, {u,} converges vaguely to u and U*(p) <lim U*(p). Thus
{U*(p)} converges increasingly to U¥(p) at every point p of Q.
On the other hand, we have

fU» dyzli;nwan dpgliznfvm dpn
and

ogi‘iﬁ{fm du=2 [Umdp+ [T d/.tn}
—lim f U dpp— f Urdu=0,
whence we have lim || u— p.||=0, which proves the strong convergence
of {pa}. q.e.d.

We call each p, of the above lemma the smoothed measure of p.
Using the smoothed measures we can easily prove the following lemma,
which was proved by Ohtsuka [5].

Lemma 3. € s complete tn the strong topology.

Next we shall prove

Lemma 4. Let p and p, (n=1,2,--+) be measures of €. If
{pa} converges strongly to u, then it converges vaguely to p.

Proof. Contrary to the assertion, we suppose that {u,} does
not converge vaguely to u. Then there exist a continuous function

f(p) and a subsequence {u,} of {u.j such that { f f d,u,,,c} converges

to a#ffd/.c. As {un,} converges strongly to u, || unll (k=1,2,---)

are bounded from above, i.e., |[pnll<M< +oc. Hence {u,} is
bounded in the space M(L) of all measures in £, and a subsequence
{uP”} of {us,} converges vaguely to a positive measure v (ef. [1],

p. 62). Hence, for the above function f(p), lim f fdu»= f fdy and

[rav= [san.

On the other hand, by Lemma 2, there exists a smoothed
measure v of y, for an arbitrary €, such that ||v—>||<e/M and U’
- | -
[Urawr~ [T au Zllv=1)
%) Prof. Deny remarked to the author that this is an immediate consequence of

the following proposition: if the sum of two lower semi-continuous functions is
continuous, then each of them is continuous.

is continuous in 2. Then, for each 7,
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[[u?||<e. Letting j tend to infinity, we have I f UYdu— f UVdy
since f UYdu and f U’ du”” converge to f U’dp and f Uvdy,

respectively. Then we let ¢ tend to zero to get f UVdu= f U dy.

=¢,

In the same way, we get fU“dpsz” dv. Thus ||p—v||=0 and

so u=v. Hence, for the above function f(p), f fdu= f f dy, which

contradicts our supposition.
Now we shall prove that the continuity principle and the condi-
tion (+) imply the generalized maximum principle of Ugaheri.
For a compact set K, we put
C*K)={pe @K:spgg UMp)< + oo},

We can define a uniform topology in €*(K) as follows: Let y, be an
element of G*(K) and ¢ be a positive number. The e-neighborhood
N(uo, €) of u, is the set of elements u of €*(K) such that |U*—Ut|<e
nearly everywhere on K. Then G*(K) is separable. To show this,
we may prove that g L N(pq, €)= {po}, that is, if Ur=U" nearly every-

where on K, then p,=». In fact, as U*=U" nearly everywhere on
K, it is easily seen that

f Uvo dpy—= f UVd,Jof—f U dy= f U dy,

whence we have p,=v. Since every element of €*(X) has a count-
able base of neighborhoods, €*(K) is metrisable.

Next we shall prove that €*(K) is complete in our topology. In
order to prove this, first we shall show that any Cauchy sequence
in €*(K) is also a Cauchy sequence in G,. Let {u.} be a Cauchy
sequence in €*(K). Then, for an arbitrary ¢>0, there exists an
integer n, such that | U¥«(p)— U*n(p)|<e nearly everywhere on K
for all n, m=n, Particularly, U(p)<U"w(p)+e€¢ nearly every-
where on K for all n=n, and hence U"n(p)<§1€111{) Uvn(p)+¢ mearly

everywhere on K for all n=n, Then, by assumption 4°, U*(p)<
sup Ubn(p)+e on K for all n=n, Hence U*(p) (n=1,2,---) are
PeE

bounded from above by a finite number M on K, that is, f D(p, Q) Ap(q)
<M<+« on K. Since &(p, ¢)>a>0 on Kx K, fd,un(p‘)<M/a. Then
we have || pp—pnll*= f(U'*n—U**m) A — ) < f | U —TUvm | dpy+

f lU%-U“mld,Lm<e( f dpat [ d,um><2€M/a. This shows that (s}
is a Cauchy sequence in .
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Now we ghall prove the completeness of G*(X). Let {u.} be a
Cauchy sequence in G*(K). Then {u.} is a Cauchy sequence in €,
as shown above. Then, by virtue of the completeness of €y, there
exists a measure p of €x such that {u,} converges strongly to p in
€x. By Lemma 4, {u,} converges vaguely to u, whence U* < lim U¥»

and p belongs to €*(K). Next we shall prove that {u,] converges
to u in €*(K). Let {¢;,} be a sequence of positive numbers such
that ¢, >e;>-:->¢;>-.. and hm ¢;=0. By our assumption, there
exists an integer %, for each j such that, for every =, m=n,,
| Urn(p)— Utn(p) |<e; except at the points of a set A(e;) whose interior

capacity is zero. Put A= GA(ej). Then A is of interior capacity
J=1

zero and | U¥s(p)—Un(p)|<e; in K—A for every n, m=n, Hence
the limiting function U(p):liin Uvn(p) exists in K—A. We can prove
that U(p)=U*(p) holds nearly everywhere in K—A. In fact, for a
positive number ¢, we set
B.={pe K—A:U@p)>U"p)+e}.

For this number e, there exists n, such that, for every n=n,,
Utn(p) > U(p)—¢</2 in K—A. Therefore, B}={pec K—A:U"(p)>
U¥p)+¢/2} contains B, for every n=n, Hence we have ¢,(B,)=0.
On the other hand, we have

B—(p< K—A: Up)>UHw)) =) By

and ct(B)gjici(Bw)z(). Therefore, U< U" nearly everywhere in
=1
K—A. Hence U=U" nearly everywhere in K—A. Thus we have
proved that {u.} converges to x in €*(K) and €*(K) is complete.
Now, for every positive integer k, we put
C={ueC®*K): UMD <k sup U*q) in 2}.
e

Then, by assumption 4°, €, is closed in €*(K) and €*(K)= ’GGI@,G by

condition (*). As €*(K) is a complete metrisable space, we can find
by Baire’s theorem an integer k, u,¢ €, and a neighborhood N(u,)

of u, such that N(u)) C €. We may assume that N(u,) is written as
follows:

N(po)={p € €*(K): | Ur—U*|<e, nearly everywhere on K}.
Put M,Lozsu;g Uv(p) and M,=M, +¢,. For every »eC*(K), pot+
e

€ belongs to N
Zsu}{) o) v belongs to N(u,) and U“( )
reE

y( )< 2kM0

U (p) < k,M,, whence

suIP UV(q) in 2.
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Thus we have proved that there exists a constant k= 2koM, for a

€o
compact set K such that, for every v e €y,
U“(p)gksu,? U¥gq) in Q.
€

5. Conversely we shall prove that the continuity principle
follows from the generalized maximum principle of Ugaheri.

Suppose that the potential U* of a positive measure u is continu-
ous on the compact carrier K of u. For any point p, of K, we can
take a sequence {L,} of compact sets, converging decreasingly to
po. Then, since U* is continuous on K, the potentials U*» of the
restrictions u, of u to L, are continuous on K,*’ and they converge
uniformly to zero. Using this and the generalized maximum principle

of Ugaheri, we can easily show that lim U*(»)<U*p,). From this,
P> Do

the continuity of U* in 2 follows immediately.
Thus we have proved our theorem completely.
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