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127. On the B-covers in Lattices

By Yataro MATSUSHIMA
Gumma University, Maebashi
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

Let L be a lattice. For any two elements o and b of L we
shall define the following three kinds of sets:

(1) J(a,b)={z|x=(@~2)—(b~2)}
(2) C(/ (@, b))= {z]|z=(a2)~(b2)}
(3) B(a, b)=J(a, b)~C(J (a, b))

B(a, b) is called the B-cover of a and b. If ceB(a,b), we shall write
achb simply.

In case L is a normed lattice, a point ¢ is defined to be between
two points @ and b if d(a,c)+d(c, b)=d(a,b), where d(z,y)=|x—y|
—|x~y|. Several lattice characterizations of this metric betweeness
have been obtained by V. Glivenko [1], L. M. Blumenthal and D. O.
Ellis [2] and the author [3]; namely ¢ lies between @ and b in the
metric sense if and only if one of the following conditions is satisfied
in the associated normed lattice L.

(G) (@~e)—~(b~c)=c=(a—c)~(b—c)
(G*) (a~e)~(b~c)=c=c—(a~b)
(G**) (a~c)~(b—c)=c=c~(a—D)

(M) (@~ (b~c))~(b—c)=c.

Thus our definition of “acb” in an arbitrary lattice is a generali-
zation of metric betweeness in a normed lattice. The notion of
B-cover for a normed lattice is due to L. M. Kelley [4].

In Theorem 1 we shall assert that (a]-—(b]=J(a,b)C (a—b],
[a)~[b)=C(J(a,b))[a~b). In Theorem 2 we shall deal with the
relations between the two B-covers B(a,b) and B(b,c).

In Theorem 3 we shall consider the necessary and sufficient
condition (A) in order that L be a distributive lattice.

In Theorems 4 and 5, we shall give the structures of B(a,b)
by imposing algebraic restrictions on them. Theorem 4 gives a
generalization of the important result obtained by L. M. Kelley.

Now let zeJ(a,b), then we have x = x~(a—b) = (a ~x)—(b~x)=x,
hence we obtain z~(a-b)=(a~x)—(b~x), that is (a,z,0)D. From
x~(ab)=2, we get x<a-—b. We have clearly a-—beJ(a,b), and
xeJ(a,b) if x<a or x=0>b. On the other hand any element z of
J(a,b) is represented by z=(a~x)—(b~x), where a~ze(a], b~xe(].
If we take any two elements z,y from .J(a,b), then x—y belongs to
J(a,b). Indeed we have x—y=(a—b)~(@—y)=(@~(@—y))— (b0~ (@—¥))
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= (@a~z)—(@~y)— (b ~2)~ b y)=2y.

Similarly any element x of C(J(a,b)) is equal to or greater than
a~b. Therefore we obtain

Theorem 1. In a lattice L we have
(1) (@] (0]=J(a,b)C(a—b]

(2) [a)~[b)=C(J (a,b)) C[a~b)
where (x]={z|2 <z}, A~B={x-y;xcA,yecB} if A,BCL, etc.

Lemma 1. axb implies x~(a—b)=x=x(a~b).

Proof. By axb, we get x=x~(a—b)=(x~a)—(x~b)=2, x <x
(a~b) Z (@ —a)~(x~b)=uw.

Lemma 1 shows that (G) implies (G*), (G**) in any lattice.

Lemma 2. axb implies a~x=>a~b, avb=a—x.

Proof. From Lemma 1, we have a~b<zx<a-b. Therefore
a~r=a~b, a—b=a-x.

Lemma 3. axb (1=1, 2), ax,x, imply x,x:b.

Proof. By azx,, ax,db we have x,=>(x,~%,)— (X, ~b) = (a~&s)~
(y~b)=2,. On the other hand, z, <z, 2, <a-—x, by Lemma 2, and
hence we have &, < (2, Z,) ~ (@~ b) < (@) ~ (X~ D)=z, by awxb.

Lemma 4. aab, byc, abe imply «xby.

Proof. Since a~b<x<a-b, b~c=<y<b-c by axb, byc, we have
a~b=<b~x=<b, b~c<b~y=<b, and hence (a~b)— (b~c) < (b~x)— (b~y)=b.
However (@ ~b)—(b~c)=b by abe. Thus we obtain (b~x)—(b~y)=b.
Similarly we have b<(b— ) ~(b—y)<(a—b)~(b—c) from b=b—zr=a'—b,
b<b-—y=<bw-ec, and hence we have (b—2z)~(b—y)=b by abc.

Lemma 5. abe, axb, byc imply a~y=<x~y.

Proof. We have x=2-(a~b)=2(a~y)=z from axb, aby. Hence
we have z—(a~y)=xz and then a~y=<x~y.

Lemma 6. (G) is equivalent to (G*) in a modular lattice. This
proof was observed in L. M. Blumenthal [2].

Lemma 7. If L is modular, then B(a,b) is a sublattice; in case
L is not modular, B(a,b) is not necessarily a sublattice.

Proof. If axb, ayb, then we have x—y=(~z)—(b~2)—(@a~Y)—
b~y =(@~@-y)~ b~ (@-y)=(ab)~(@—y)=2-y. Since 2 (a~b)
=z, y~(a~b)=y, we have (x—y)—(a~b)=x-y, and hence a(x-—y)b
by Lemma 6. Similarly we have a(x~y)b,

If L contains 8 elements a, b, 2, ¥, 2, 2, %1, ¥, such that a—b>x,>a,
a—b>y,>b, a>x>a~b, b>y>a~b, z, vy, =a b, x,~Y; =2, >TY=2,
x~y=a~b (L is certainly non-modular in this case), then we have
axb, ayb but not a(x—y)b.

Lemma 8. In case L is modular, abe, axb, byc imply axe, aye.

Proof. By abe, axb we have x =z (a ~b)=2—(a~c)=%, and hence
r=x—(a~c). Since a~b<b~wx, c~x=<b~x by axb, xbc, we have (1)
(a~b)y~(c~x)<b~2x. Since L is modular, we have (z~c)—(a~b)
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=r~(c—~(a~b)) from a~b=<wx, and then c—(a~b)=(b~c)—(a~b)=b
by abe, and hence we have (2) (a~b)—(c~2)=b~z. From (1), (2)
we have (a~b)—(¢c~z)=b~x. Thus we have z=(@~z)—(b~2)=
(@~x)—(@a~b)~(c~x)=(a~x)— (c~x).

Accordingly we have (a~z)—(c~x)=2=2-—(a~c), that is axc by
Lemma 6. We have aye similarly.

Lemma 9. In case L is modular, abe, axb, byc imply xye, axy.

Proof. From xbc, byc we have y=<y-—(@x~c)<y-—(b~c)=y. By
ayc, Lemma 5, xby and byc, we have y=(a~y)—(y~e)<(@~y)—([Hy~c)
=b~y)—(y~c)=y. Hence we have y=1y-—(x~c)=(x~y)—(y~o).
Similarly we have axy.

Remark. In case L -is non-modular, Lemmas 8 and 9 are not
necessarily true. For, if L contains 6 elements a,b,¢,a~c¢,x,y such
that b>x>a>a~c, b>y>c>a~c, r—y=a—c=>b, t~y=a~c¢, when L
is certainly non-modular, then we have abc, axb, byc but we have not
axe, aye, axy and xyc.

Theorem 2. If abe, axb, byc, then we have
(1) xby in any lattice,

(2) awe, aye, xye, axy in o modular lattice.

Corollary 2.1. In a modular lattice axb (¢=1,2), bye, ax,x, abe
imply x,2.9.

Proof. Since ax,y, ax.y by Lemma 9 and we have x,2;b by Lemma
3, thus we have x,by, x.by by Lemma 4. We have further z, <x,-—
(@ ~Y) = Ty~ (X, ~b) =13 by @by, 2:2:0, To=(a~T2) (T ~Y) = (@1 ~Ts)~
(@y~Y) bY azsy, ax:%, < (X, ~25)— (X, ~D)=1x, by 2.0y, x,2:b. Hence we
obtain z,x,y.

Corollary 2.2. In a modular lattice L, suppose that azb (¢=1, 2),
bye, abe, ax,x,; then we have

(@~ @) ~Y = (T, ~Y)~ (T ~Y).

Proof. We have z,2,y from Corollary 2.1, hence we have (x; ~x,)
w(@y~y)=x,~(x,~y). Since L is modular, we have the following
equivalent equation (x,—x,)~y=(x,~y)—(:~Y).

Theorem 3. In order that L be a distributive lattice it 1s necessary
and sufficient that the condition (A) below hold for any elements a, b
of L.

(A) zeB(a,b) if and only if a~b<x<a-b.

Proof. It is clear that if L is distributive then (A) holds for
any elements a,b of L. Suppose that L is not distributive. Then
there exist five elements a, b, ¢, d, ¢ such that either

(o) d=a~b=a~c=b~e¢, e=a-—b=a-—c=bw-c
or

B) d=a~b=a~e¢ e=a-b=awe, d<b<ec<e®

%> Cf. G. Birkhoff: Lattice Theory, Theorem 2, 134 (1948).% )
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In each case we have d=a~b,e=a>b,d<c<e. However we
have c¢ B(a,b); because in case (a) (c~a)—(¢c~b)=d—d=d=¢, and
in case (8) (¢c~a)—(c~b)=a—d=a=e. Thus if L is not distributive,
the condition (A) dose not hold for some elements a,b of L. This
proves Theorem 3.

In any lattice L

(1) axb, ayb, xzay and xby imply x—y=a-b,x~y=a~b. For,
we have x—y<a-b from z=<a-b, y<ab, and a—b=<r-—y similarly,
and hence a-—b=x—y. Similarlies x~y=a~b.

(2) B(a,b)=B(c,d) implies a~b=c—d,a~b=c~d. For, it is
evident from (1).

If L is distributive, then Theorem 8 shows that a-b=c-d,
a~b=c~d imply B(a,b)=B(c,d).

Theorem 4. For any elements a,b,¢,d of L

(1) B(a,b)=B(e,d) tmplies a~b=c—d, a~b=c~d in any lattice
L.

(2) avb=c—d,a~b=c~d imply B(a,b)=B(c,d), if and only
of L is a distributive lattice.

Proof. It is sufficient to prove that if L is not distributive there
exist four elements a,bd,x,y such that a-b=x-y, a~b=x~y, but
B(a,b) %= B(x,y). As is shown in the proof of Theorem 3 there exist
five elements a,b, ¢, d, ¢ such that either () or (8) holds. If we put
x=a, y=c, then we have d=a~b=x~y, e=a—b=x—y, but ¢ ¢ B(a,D),
ceB(z,y)=B(a,c).

Corollary 4.1. In any lattice, suppose that B(a,d) = B(x,, 25),
axb (1=1,2), ax,x,, Then we have x;,=a, x,=b.

Proof. =, = (av—z,)~(@, ;) = (a—wx,)~(@a—d) =a—x; by ax,
Theorem 4, and hence z;>a. On the other hand, z,=(a~x,)— (%, ~T,)
=(@~2,)~(@a~b)=a~x,; by ax,x,, Theorem 4, and hence z, <a. Ac-
cordingly we have x,=a. Since xx;b from ax,b, and hence we have
2,=>b similarly.

Corollary 4.2. Let L be a complemented distributive lattice with
I1,0. If we take a,b of L such that a—b=1I, a~b=0, then we have
B(a,b)=B(1,0)=L.

Proof is evident from Theorem 4.

Now we consider the structure of B(a,b) in case there is a
maximal chain between ¢ and a~b. Suppose that a, covers a,=a,~b,
and a.xb, then we get ay,>a,~x=>a; by Lemma 2, hence we have
either a,=a,~x or a,~x=a, from a,>a,. In the first case we have
ay~b=x=>a,. In the second case a,— (x~b)=x from (a,~x)— (x~b)=2,
hence x~b=x since x,b=>a,.

Define C,,= {¢|a, <% <a,—b}; then we have B(a,, b):Z2 C,. In
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the same way, if there is a maximal chain between & and a~b
such that a=a,>a,_>:-->a,=a~b, then we obtain B(a, b)=§n] Cy,-
i=1

Theorem 5. If a lattice is generated by the two maximal chains
{a,}, {b,,} such that

B=0, >0y 1>+ >A;=0D,
b=b,>b, > >b=a~b,
then B(a, b) consists of mn lattice points.
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