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1. Introduction. In a previous paper [6J, S. Hanai and the
author have dealt with the problem: "Under what condition will the
image of a metric space under a closed continuous mapping be
metrizable ?", and obtained the second part of the following theorem;
this result, as M. Tsuda has called our attention, was also obtained
by A. H. Stone and announced in [7.

Theorem 1. Let X be a metric space and let a topological space
Y be the image of X under a closed continuous mapping f. Then Y is
paracompact and perfectly normal. Furthermore, Y is metrizable if
and only if the boundary f-(y) of the inverse image f-(y) is compact

for every point y of Y.
In the present note we shall deduce the first part of Theorem

I as an immediate consequence of Theorem 3 below, and establish an
analogous result for the case of locally compact spaces; namely we
shall prove the following theorems.

Theorem 2. Let X be a paracompact and locally compact Haus-
dorff space and let a topologiccl space Y be the image of X under a
closed continuous mapping f. Then Y is a paracompact Hausdorff
space. Furthermore Y is locally compact if and only if the boundary

f (y) of the inverse image f-(y) is compact for every point y of Y.
Theorem 3. Let X be a paracompact and perfectly normal space

and let a topological space Y be the image of X under a closed continu-
ous mapping f. Then Y is paracompact and perfectly normal.

The second part of Theorem 2 is a direct consequence of Theorem
4 below.

Theorem 4. Let f be a closed continuous mapping of a para-
compact and locally compact Hausdorff space X onto another topological
space Y. Denote by Yo [or Y, the set of all points y of Y such that
f-(y) [or 3f-(y) J is not compact. Then we have Y Yo and
( a Yo is a closed discrete subset of Y;
( b ) Y-Y is locally compact;
( c ) the closure of any neighbourhood of y is not compact for every point
yof Y.

From Theorem 4 we obtain immediately
Corollary. Under the assumption of Theorem 4 the mapping f

admits of a factorization f fi. off such that
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( ) f"XZ is a closed continuous mapping onto Z and [fV(z) z Z
is a discrete collection where Z is the set of points z such that fv(z)
contains at least two points;
(ii) f" Z--> Y is a closed continuous-mapping and f(y) is compact
for every point y of Y.

Furthermore we can prove
Theorem 5. Let f be a closed continuous mapping of a para-

compact and locally compact Hausdorff space X onto a locally compact
space Y. Then f can be extended to a continuous mapping of y(X)
onto 7(Y), where 7(X) and 7(Y) mean the Freudenthal compactifica-
tions of X and Y respectively.)

2. Proof of (a) of Theorem 4. It is sufficient to prove that
{f-(Y)]Y Yo} is a discrete collection of closed sets in X. For this
purpose we shall show that any compact set C intersects only a
finite number of sets f-(y), y e Yo. Suppose that there exists a
countably infinite number of points x, i-1,2,.., of X such that

xC<f-(Y), Y Yo, i--=1,2,...; y=y for ij.
Since C is compact there exists a limit point x0 of the set

[x i- 1,2,..- }. We may assume that f(Xo)y, i=1,2,..- if f(Xo)=y
for some i, we have only to replace [x} by [xlji}. Putting
yo---f(xo), we have
(1) Y0eY0; YoY for i-1,2,....

To prove (1) suppose that yoe Y-Yo. Then f-(Y0) is compact.
Since X is locally compact there exists an open set L such that L
is compact and f-(yo) L. If we put M= Y-f(X- L), then M is
an open set of Y and Xoef-(yo) C:.f-(M)L. The point Xo is a
limit point of [x} and hence x e f-(M) for some i. Therefore for
such i we have f-(y)f-(M)L. Thus f-(y) must be compact
but this contradicts the assumption that ye Y0. This proves (1).

By the assumption of the theorem X is paracompact and locally
compact, and hence there exists a locally finite open covering

IGniter<2} of X such that G is compact for each . If we put
( 2 ) F-- [ Gf-(yo) 0},
F is an infinite set, since f-(Yo) is not compact. Let us put
(3) G- [G]aeI’}, Vo- Y-.f(X-G);
then Vo is open and f- (Y0) f-(Vo) G.

The set of all points x which belong to f-(Vo), since X is a
T-space, consists of an infinite number of points; these points will
be denoted by x, i-.1,2,.... Then x0 is clearly a limit point of
the set [x}. Therefore if we put D-[y ]i-1,2,...} we have

(4) yoeD-D.

1) As for the Freudenthal compactificati.ons, cf.
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Now we have x f-(V0) and hence y V0.
Thus
(5) f-(y,)f-(Vo)G, i-1,2,....

In view of (3) and (5) we can find points x of X and elements
a, of F such that

(6) x e f-(y) (X- G) 6,, i 2,3,.
J---1

i--1
indeed, since f-(y) is not compact, we have f-(y).(X-G)0

j--1

for any finite number of sets G,..., G._, and hence these x,
can be found b induction.

Since x e G,, aa for i =j and (G I,e F} is locally finite,
the set fx 1i-1,2,...} is a closed subset of X. Therefore D= fY}
is closed in Y, since f is a closed map. However, (4) shows that D
is not closed in Y. Thus we are led to a contradiction, and the
assertion (a) in Theorem 4 is proved.

3. Proof of (b) of Theorem 4 (cf. Hanai [3]). Let ye Y-Y.
Then f-(y) is compact. Since X is locally compact, there exists

an open set L such that L is compact and f-(y)L. If we put
U--f-(y)L, V= Y-f(X- U), then V is open in Y and f-(y)
f-(V)U. Hence we have Vf(U)=f( U)=f(L)y. Thus V is
compact. This proves (b) of Theorem 4.

4. Proof of (c) of Theorem 4. Let yY. Then f-(y) is
not compact. According to (a) of Theorem 4 proved in 2 the set
F--’..{f-l(y)lyYo-y} is a closed set of X, and F-..f-(y)--O.
Hence if we put V= Y-f(F), V is an open set of Y and ye V.

Suppose that there exists a neighbourhood of y whose closure
is compact. Then there exists also an open neighbourhood V of y
such that V is compact and V V.

Since f-(y)f-(V) and Sf-(y) is not compact and X is
paracompact, there exists a locally finite collection [G a e F} of open
sets of X such that F is an infinite set and
( 7 f-(y) [Gia [’},
( 8 ) G
(9) Gf-y)0 for each
In view of (9) we can take for each a a point x of Xsuch that
x (X--f-(y))G,. Since [G} is locally finite the set A [x a eF
is a closed discrete set, and moreover A consists of infinitely many
points.

On the other hand, the cardinal number of A is shown to be
finite as follows. Since V is compact and f(A) is discrete, f(A)
must be a finite set of points. By the construction of A, we have
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f(A) VI-Yl Y- Yo. Hence f-(y) is compact for every point y of
f(A) and consequently Af-(y) consists of a finite number of points
since A is discrete. Therefore A must be a finite set of points.
This is a contradiction. Thus the assertion (c) in Theorem 4 is
proved.

5. Proof of Theorem 2. The second part of Theorem 2 follows
readily from (b) and (c) of Theorem 4. To prove the first part we
shall need the following lemmas.

Lemma 1. Let X be a collectionwise normal space. If there exists
a closad subset A of X such that A and every closed subste of X
contained in X-A are paracompact, then X is paracompact.

This lemma follows readily from a theorem of C. H. Dowker [-2,
Lemma 1.)

Lemma 2. Let f be a closed continuous mapping of a para-
compact normal space X onto another topological space Y and let Y
be the set of points y of Y such that f-(y) is not compact. If
[f-(Y) iY Y} is a discrete collection in X, then Y is paracompact.

Proof. Let F be any closed set of Y such that F. Y-Y. If
we denote by g the partial map f lf-(F), then g is a closed continu-
ous mapping of f-(F) onto F such that g-’(y) is compact for every
point y of F. Therefore F is paracompact by [6, Theorem 3]. Since

Y is a closed discrete set, Y is paracompact. Moreover Y is collec-
tionwise normal by [6, Theorem 3]. Therefore Y is paracompact by
Lemma 1.

Now the first part of Theorem 2 is a direct consequence of
Lemma 2.

5. Proof of Theorem 5. Theorem 5 follows from Lemma 3
below and Theorem 2 by an argument given in the proof of 5,
Theorem 3J.

Lemma 3. Let f be a closed continuous mapping of a topological
space X onto another topological space Y such that f-(y) is compact

for every point y of Y. If A is a closed set of Y whose boundary
A is compact, then .f-(A) is compact.

Proof. Since f is closed, we have f-(A)--f-(A),-,X-f-(A)
f-(A)f-(Y;L-A).-f-(A). For yA, Int f-(y)Intf-(A) and
hence f-(y) f-(A) 3f-(y). Therefore if we denote by g

the partial map f f-(A), then g is a closed continuous map of

2) By a theorem of E. Michael [4, Theorem 1] and a theorem of Dowker mentioned

above it can easily be shown that a collectionwise normal space is paracompact if it

is a countable sum of closed sets each of which is paracompact. This is also proved
by K. Nagami. This proposition and Lemma 1 fail to be valid if "collectionwise

normal" is replaced by "normal"; cf. C. H. Dowker: Local dimension of normal

spaces, Quart. J. Math., 6, 101-120 (1955).
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f-(A) onto f(f-(A))-K such that g-(y) is compact for every
point y of K. Since K is compact as a closed subset of A, f-(A)
is also compact. Ths proves Lemma 3.

7. Proof of Theorem 3. We note first that Y is collectionwise
normal (cf. 6, Theorem 3]). It is also obvious that Y is perfectly
normal.

Let [G]a<)} be any open covering of Y where ranges
over all ordinals less than a fixed ordinal f). Then
is an open covering of X. Since X is paracompact, there exists a
locally finite closed covering A <: f2 of X such that Asf-(G)
for each . Since - [Arl,/<:a} is a closed set of Xand f is a closed
map, the union ff(Ar)l/<a} is closed in Y. As is remarked
above Y is perfectly normal. Hence f(A)--f.t(Ar)l,<a. is an
Fo-set of Y. Therefore there exists a countable number of closed
sets F, i-1,2,.., of Y such that

f(A,)- If(At) ]/<} Fl for

Then we have clearly
F,,-..F-O for

Let P be any subset of the set [a]la<.2}. Then [f-t(F,)
,....A [aeF} is a locally finite collection of closed sets of X and hence
the union [f-(F,),..A,, [a e F} is closed. Therefore {F, [a e F}
is closed, since F,,f(A,) and hence f(f-(F,),-..A)--F,.

Thus for each i==1,2,.., the family [F, ]1a<9[ is a discrete
collection of closed sets in Y. Since Y is collectionwise normal and

Y= [Fi la<, i=1,2,... f(A0)
and F,, G,, f(Ao) Go, by a theorem of R. H. Bing [1, Theorem 13
we can find a locally finite open covering of Y which is a refinement
of {G,}. This proves Theorem 3.
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