## 6. On the Ecart between Two "Amounts of Information"

By Kōmei Suzuki<br>(Comm. by K. Kunugr, m.J.A., Jan. 12, 1957)

§1. $d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)=\sum_{i=0}^{\infty} \Delta P_{i} \log \left(1+\frac{\Delta P_{i}}{P_{i}}\right)$
As was shown in the preceding paper the "amount of information ${ }^{22)-4)}$ has been defined by a specified probability space (or distribution), ( $R, \mathfrak{x}, \lambda$ ), and the partition, ${ }^{1)} \Lambda$, imposed on the space $R$. And we have conventionally denoted it by $H(\lambda ; \Lambda)$. As usual

$$
\Lambda: R=\bigcup_{i=0}^{\infty} A_{i}, A_{i} \in \mathfrak{X}, A_{i} \cap A_{j}=0 \quad(i \neq j)
$$

For any two distributions $\left(R, \mathfrak{X}, \lambda_{1}\right)$ and ( $R, \mathfrak{X}, \lambda_{2}$ ), providing
(a) $\quad \lambda_{1}\left(A_{i}\right)=P_{i} \geq 0, \lambda_{2}\left(A_{i}\right)=P_{i}+\Delta P_{i} \geq 0, \sum_{i} P_{i}=\sum_{i}\left(P_{i}+\Delta P_{i}\right)=1$
(b) the series $H\left(\lambda_{1} ; \Lambda\right)=\sum_{i} P_{i} \log 1 / P_{i}$ and $H\left(\lambda_{2} ; \Lambda\right)=\sum_{i}\left(P_{i}+\Delta P_{i}\right)$ $\log 1 /\left(P_{i}+\Delta P_{i}\right)$ to converge
(c) $\quad-1+\alpha \leq \Delta P_{i} / P_{i} \leq k ; k>0,1>\alpha>0$ for all $i$,
we have directly from the result obtained in the preceding paper

$$
0 \leq \Delta H-\sum_{i=0}^{\infty} \Delta P_{i} \log \begin{gathered}
1 \\
P_{i}+\Delta P_{i}
\end{gathered} \leq \sum_{i=0}^{\infty} \Delta P_{i} \log \left(1+\frac{\Delta P_{i}}{P_{i}}\right)
$$

where $\Delta H=H\left(\lambda_{2} ; \Lambda\right)-H\left(\lambda_{1} ; \Lambda\right)$.
Denoting $\sum_{i=0}^{\infty} \Delta P_{i} \log \left(1+\frac{\Delta P_{i}}{P_{i}}\right)$ by $d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)$, we have easily
(a)
(b)
(c)

$$
d(\lambda, \lambda ; \Lambda)=0
$$

$$
\begin{equation*}
d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right) \geq 0 \quad \text { for } \lambda_{1} \neq \lambda_{2} \tag{1.1}
\end{equation*}
$$

$$
d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)=d\left(\lambda_{2}, \lambda_{1} ; \Lambda\right)
$$

It must be noted that we could not avoid the sign of equality in (b) of (1.1); because even though $\lambda_{1} \neq \lambda_{2}$, we would often have that $\lambda_{1}\left(A_{i}\right)=\lambda_{2}\left(A_{i}\right), i=0,1,2, \cdots$, for some partitions imposed on $R$.

To appreciate more fully we consider a distribution ( $R, \mathfrak{X}, \lambda_{3}$ ) together with the above $\left(R, \mathfrak{x}, \lambda_{1}\right)$ and $\left(R, \mathfrak{X}, \lambda_{2}\right)$.

Providing again the following
(d) $\quad \lambda_{1}\left(A_{i}\right)=P_{i}^{(1)}, \lambda_{2}\left(A_{i}\right)=P_{i}^{(2)}=P_{i}^{(1)}+\Delta P_{i}^{(1)}, \lambda_{3}\left(A_{i}\right)=P_{i}^{(3)}=P_{i}^{(2)}+\Delta P_{i}^{(2)}$
(e) $\quad-1+\alpha \leq \Delta P_{i}^{(\nu)} / P_{i}^{(\nu)} \leq k ; 1>\alpha>0, k>0, i=0,1,2, \cdots, \nu=1,2$
we have

$$
\begin{align*}
& d\left(\lambda_{3}, \lambda_{1} ; \Lambda\right)-\left\{d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)+d\left(\lambda_{2}, \lambda_{3} ; \Lambda\right)\right\} \\
& \quad=\sum_{i=0}^{\infty}\left(\Delta P_{i}^{(1)} \log P_{i}^{(3)} / P_{i}^{(2)}+\Delta P_{i}^{(2)} \log P_{i}^{(2)} / P_{i}^{(1)}\right) \tag{1.2}
\end{align*}
$$

and

$$
\left(\Delta P_{i}^{(1)} \log P_{i}^{(3)} / P_{i}^{(2)}+\Delta P_{i}^{(2)} \log P_{i}^{(2)} / P_{i}^{(1))}\left\{\begin{array}{l}
>0 \leftrightarrow \Delta P_{i}^{(1)} \cdot \Delta P_{i}^{(2)}>0 \\
=0 \leftrightarrow \Delta P_{i}^{(1)} \cdot \Delta P_{i}^{(2)}=0 \\
<0 \leftrightarrow \Delta P_{i}^{(1)} \cdot \Delta P_{i}^{(2)}<0 .
\end{array}\right.\right.
$$

These relations show that the quantity $d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)$ does not satisfy the triangle law of distance; it could however well describe the degree of the discrepancy two distributions $\left(R, \mathfrak{X}, \lambda_{1}\right)$ and $\left(R, \mathfrak{X}, \lambda_{2}\right)$ under the partition imposed, $\Lambda$.

Thus, remembering its origin, we take $d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)$ into consideration as the "écart" between two "amounts of information" about the capability of the source due to the distributions $\left(R, \mathfrak{x}, \lambda_{1}\right)$ and ( $R, \mathfrak{x}, \lambda_{2}$ ) with the partition, $\Lambda$, which is imposed on $R$;
(Cf. $\S 2$ in the preceding paper.)
§ 2. $\int\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{2}(x)}{f_{1}(x)} d x$
We consider, henceforth, the random variable $X$, with the probability density $f(x)$, attached to the probability space $(R, \mathfrak{X}, \lambda)$ while taking up conveniently the set of whole real numbers $\{x\}$ as the space $R$; and the components ( $A_{i}$ ) of the partition ( $\Lambda$ ) are considered to be reduced to the half open intervals $I_{i}=a_{i}<x \leq b_{i}, i=0,1,2, \cdots$, hence we can put

$$
P_{i}=\lambda\left(I_{i}\right)=\int_{I_{i}} f(x) d x .
$$

Then the following may be easily extended to the discussion in an $n$-dimensions Euclidean space $R=R_{n}$.

Let us provisionally attach the probability densities $f_{1}(x)$ and $f_{2}(x)$ to the measure $\lambda_{1}, \lambda_{2}$ respectively.

For any number $\varepsilon$, we may have an integer $N$ such as

$$
0 \leq \sum_{i=N}^{\infty} P_{i} \log \frac{1}{P_{i}}, \quad \sum_{i=N}^{\infty}\left(P_{i}+\Delta P_{i}\right) \log \frac{1}{P_{i}+\Delta P_{i}} \leq \varepsilon
$$

Then if we take a domain $A$ such as $A=\bigcup_{\nu=0}^{n} I_{i \nu} \supseteq \bigcup_{i=0}^{N} I_{i}$ we get

$$
\begin{gathered}
0 \leq H\left(\lambda_{1} ; \Lambda\right)-\sum_{\nu=0}^{n} P_{i_{\nu}} \log \frac{1}{P_{i_{\nu}}} \leq \varepsilon \\
0 \leq H\left(\lambda_{2} ; \Lambda\right)-\sum_{\nu=0}^{n}\left(P_{i \nu}+\Delta P_{i_{\nu}}\right) \log \frac{1}{P_{i_{\nu}}+\Delta P_{i_{\nu}}} \leq \varepsilon
\end{gathered}
$$

Thus, referring to (e) of $\S 1$, we can define a positive number $g$ such as $0 \leq d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)-\sum_{\nu=0}^{\infty} \Delta P_{i_{\nu}} \log \left(1+\frac{\Delta P_{i_{\nu}}}{P_{i_{\nu}}}\right) \leq \varepsilon / g$.

If the integral $\int\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{2}(x)}{f_{1}(x)} d x$ might be obtained over $A$, we could set

$$
\sum_{\nu=0}^{n} \Delta P_{i_{\nu}} \log \left(1+\frac{\Delta P_{i_{\nu}}}{P_{i_{\nu}}}\right)=\int_{A}\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{2}(x)}{f_{1}(x)} d x+\epsilon(A, \Lambda)
$$

and when $\max _{\nu}\left(b_{i \nu}-a_{i_{\nu}}\right)$ tends to zero, $\epsilon(A, \Lambda)$ also tends to zero.

Then

$$
\epsilon(A, \Lambda) \leq d\left(\lambda_{1}, \lambda_{2} ; \Lambda\right)-\int_{\Lambda}\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{2}(x)}{f_{1}(x)} d x \leq \varepsilon / g+\epsilon(A, \Lambda)
$$

Thus we can reach the formula

$$
d\left(\lambda_{1}, \lambda_{2}\right)=\int_{R}\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{2}(x)}{f_{1}(x)} d x
$$

And we have also
(a)

$$
\begin{equation*}
d(\lambda, \lambda)=0 \tag{2.1}
\end{equation*}
$$

(b)
$d\left(\lambda_{1}, \lambda_{2}\right)>0$ for $\lambda_{1} \neq \lambda_{2}$
( c ) $\quad d\left(\lambda_{1}, \lambda_{2}\right)=d\left(\lambda_{2}, \lambda_{1}\right)$
and corresponding to the relations (1.2), we have

$$
\begin{aligned}
& d\left(\lambda_{1}, \lambda_{3}\right)-\left\{d\left(\lambda_{3}, \lambda_{2}\right)+d\left(\lambda_{2}, \lambda_{1}\right)\right\} \\
& \quad=\int_{R}\left\{\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{3}(x)}{f_{2}(x)}+\left(f_{3}(x)-f_{2}(x)\right) \log \frac{f_{2}(x)}{f_{1}(x)}\right\} d x \\
& \quad \text { and }
\end{aligned}
$$

$$
\begin{aligned}
\left\{\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{3}(x)}{f_{2}(x)}+\right. & \left.\left(f_{3}(x)-f_{2}(x)\right) \log \begin{array}{l}
f_{2}(x) \\
f_{1}(x)
\end{array}\right\} \\
& >0 \leftrightarrow\left(f_{2}(x)-f_{1}(x)\right)\left(f_{3}(x)-f_{2}(x)\right)>0 \\
& =0 \leftrightarrow\left(f_{2}(x)-f_{1}(x)\right)\left(f_{3}(x)-f_{2}(x)\right)=0 \\
& <0 \leftrightarrow\left(f_{2}(x)-f_{1}(x)\right)\left(f_{3}(x)-f_{2}(x)\right)<0 .
\end{aligned}
$$

Thus, the proposition described in the probability mass $\left(P_{i}\right)$ has been rewritten in the corresponding probability density $(f(x))$.
And we may call $d\left(\lambda_{1}, \lambda_{2}\right)$, the écart ${ }^{5)}$ between two amounts of information due to the probability distributions $\left(R, \mathfrak{x}, \lambda_{1}\right)$ and $\left(R, \mathfrak{X}, \lambda_{2}\right)$.

In the preceding paper we have had

$$
\begin{aligned}
\Delta H & =\sum_{i} \Delta P_{i} \log \frac{1}{P_{i}}-\sum_{i}\left(P_{i}+\Delta P_{i}\right) \log \frac{P_{i}+\Delta P_{i}}{P_{i}} \\
& =\sum_{i} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}}+\sum_{i} P_{i} \log \frac{P_{i}}{P_{i}+\Delta P_{i}}
\end{aligned}
$$

then

$$
\begin{aligned}
& \sum_{i} \Delta P_{i} \log \frac{1}{P_{i}}-\sum_{i} \Delta P_{i} \log \frac{1}{P_{i}+\Delta P_{i}} \\
&=\sum_{i}\left(P_{i}+\Delta P_{i}\right) \log \frac{P_{i}+\Delta P_{i}}{P_{i}}-\sum_{i} P_{i} \log P_{i}+\Delta P_{i} \\
& P_{i}
\end{aligned}
$$

S. Kullback and A. Leibler ${ }^{6)}$ were regardless about this, though it may be said that they have derived the formula $\int\left(f_{2}(x)-f_{1}(x)\right) \log \frac{f_{2}(x)}{f_{1}(x)} d x$ from the latter half of the above relation.

## References

1) Darrow, C. K.,: Statistical theories of matter radiation and electricity, Phys. Rev. (1929).
2) Wiener, N.,: Cybernetics (1948).
3) Shannon, C. E.,: The Mathematical Theory of Communication (1949).
4) Weaver, W.,: Recent Contribution to the Mathematical Theory of Communication (1949).
5) Kunugi, K.,: Kaisekigaku Yōron (Essentials of Analysis) (1951).
6) Kullback, S., and Leibler, A.,: On information and sufficiency, Ann. Math. Stat., 22 (1951).
