6. On the Écart between Two "Amounts of Information"

By Kōmei Suzuki

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1957)

§ 1.
$$d(\lambda_1, \lambda_2; \Lambda) = \sum_{i=0}^{\infty} \Delta P_i \log\left(1 + \frac{\Delta P_i}{P_i}\right)$$

As was shown in the preceding paper the "amount of information"²⁾⁻⁴⁾ has been defined by a specified probability space (or distribution), $(R, \mathfrak{X}, \lambda)$, and the partition,¹⁾ Λ , imposed on the space R. And we have conventionally denoted it by $H(\lambda; \Lambda)$. As usual

$$A:R= igcup_{i=0}^{\sim}A_i,\ A_i\in\mathfrak{X},\ A_i\cap A_j=0 \quad (i\!=\!j).$$

For any two distributions $(R, \mathfrak{X}, \lambda_1)$ and $(R, \mathfrak{X}, \lambda_2)$, providing (a) $\lambda_1(A_i) = P_i \ge 0$, $\lambda_2(A_i) = P_i + \Delta P_i \ge 0$, $\sum_i P_i = \sum_i (P_i + \Delta P_i) = 1$ (b) the series $H(\lambda_1; \Lambda) = \sum_i P_i \log 1/P_i$ and $H(\lambda_2; \Lambda) = \sum_i (P_i + \Delta P_i)$

$$\log 1/(P_i + \Delta P_i)$$
 to converge

(c) $-1+\alpha \leq \Delta P_i/P_i \leq k; k>0, 1>\alpha>0$ for all *i*,

we have directly from the result obtained in the preceding paper

$$0 \leq \! \varDelta H \! - \sum\limits_{i=0}^\infty \varDelta P_i \log rac{1}{P_i \! + \! \varDelta P_i} \leq \! \sum\limits_{i=0}^\infty \varDelta P_i \log \Bigl(1 \! + \! rac{\varDelta P_i}{P_i} \Bigr)$$

where $\Delta H = H(\lambda_2; \Lambda) - H(\lambda_1; \Lambda)$.

Denoting
$$\sum_{i=0}^{\infty} \Delta P_i \log \left(1 + \frac{\Delta P_i}{P_i}\right)$$
 by $d(\lambda_1, \lambda_2; \Lambda)$, we have easily (a) $d(\lambda_1, \lambda_2; \Lambda) = 0$

 λ_2

(1.1) (b)
$$d(\lambda_1, \lambda_2; \Lambda) \ge 0$$
 for $\lambda_1 \ne$

(c)
$$d(\lambda_1, \lambda_2; \Lambda) = d(\lambda_2, \lambda_1; \Lambda).$$

It must be noted that we could not avoid the sign of equality in (b) of (1.1); because even though $\lambda_1 \neq \lambda_2$, we would often have that $\lambda_1(A_i) = \lambda_2(A_i)$, $i=0, 1, 2, \cdots$, for some partitions imposed on R.

To appreciate more fully we consider a distribution $(R, \mathfrak{X}, \lambda_3)$ together with the above $(R, \mathfrak{X}, \lambda_1)$ and $(R, \mathfrak{X}, \lambda_2)$.

Providing again the following

 $\begin{array}{ll} ({\rm d}\) & \lambda_1(A_i) \!=\! P_i^{(1)}\!, \ \lambda_2(A_i) \!=\! P_i^{(2)} \!=\! P_i^{(1)} \!+\! \varDelta P_i^{(1)}\!, \ \lambda_3(A_i) \!=\! P_i^{(3)} \!=\! P_i^{(2)} \!+\! \varDelta P_i^{(2)} \\ ({\rm e}\) & -1 \!+\! \alpha \!\leq\! \varDelta P_i^{(\vee)} \!/\! P_i^{(\vee)} \!\leq\! k; \ 1\!>\! \alpha\!>\! 0, \ k\!>\! 0, \ i\!=\! 0, 1, 2, \cdots, \ \nu\!=\! 1, 2 \\ {\rm we have} \end{array}$

$$d(\lambda_3, \lambda_1; \Lambda) - \{ d(\lambda_1, \lambda_2; \Lambda) + d(\lambda_2, \lambda_3; \Lambda) \}$$

= $\sum_{i=0}^{\infty} (\Delta P_i^{(1)} \log P_i^{(3)} / P_i^{(2)} + \Delta P_i^{(2)} \log P_i^{(2)} / P_i^{(1)})$

(1.2) and

$$(\varDelta P_i^{(1)} \log P_i^{(3)} / P_i^{(2)} + \varDelta P_i^{(3)} \log P_i^{(2)} / P_i^{(1)}) \begin{cases} >0 \leftrightarrow \varDelta P_i^{(1)} \cdot \varDelta P_i^{(2)} > 0 \\ = 0 \leftrightarrow \varDelta P_i^{(1)} \cdot \varDelta P_i^{(2)} = 0 \\ < 0 \leftrightarrow \varDelta P_i^{(1)} \cdot \varDelta P_i^{(2)} < 0. \end{cases}$$

K. Suzuki

These relations show that the quantity $d(\lambda_1, \lambda_2; \Lambda)$ does not satisfy the triangle law of distance; it could however well describe the degree of the discrepancy two distributions $(R, \mathfrak{X}, \lambda_1)$ and $(R, \mathfrak{X}, \lambda_2)$ under the partition imposed, Λ .

Thus, remembering its origin, we take $d(\lambda_1, \lambda_2; \Lambda)$ into consideration as the "écart" between two "amounts of information" about the capability of the source due to the distributions $(R, \mathfrak{X}, \lambda_1)$ and $(R, \mathfrak{X}, \lambda_2)$ with the partition, Λ , which is imposed on R;

(Cf. $\S 2$ in the preceding paper.)

§ 2.
$$\int (f_2(x) - f_1(x)) \log \frac{f_2(x)}{f_1(x)} dx$$

We consider, henceforth, the random variable X, with the probability density f(x), attached to the probability space $(R, \mathfrak{X}, \lambda)$ while taking up conveniently the set of whole real numbers $\{x\}$ as the space R; and the components (A_i) of the partition (Λ) are considered to be reduced to the half open intervals $I_i = a_i < x \leq b_i$, $i = 0, 1, 2, \cdots$, hence we can put

$$P_i = \lambda(I_i) = \int_{I_i} f(x) dx.$$

Then the following may be easily extended to the discussion in an *n*-dimensions Euclidean space $R=R_n$.

Let us provisionally attach the probability densities $f_1(x)$ and $f_2(x)$ to the measure λ_1, λ_2 respectively.

For any number ε , we may have an integer N such as

$$0 \! \leq \! \sum \limits_{i=\scriptscriptstyle N}^{\infty} \! P_i \log rac{1}{P_i}, \;\; \sum \limits_{i=\scriptscriptstyle N}^{\infty} (P_i \! + \! \varDelta P_i) \log rac{1}{P_i \! + \! \varDelta P_i} \! \leq \! arepsilon$$

Then if we take a domain A such as $A = \bigcup_{\nu=0}^{n} I_{i\nu} \supseteq \bigcup_{i=0}^{N} I_{i}$ we get

$$0 \leq H(\lambda_1; \Lambda) - \sum_{\nu=0}^n P_{i_{\nu}} \log \frac{1}{P_{i_{\nu}}} \leq \varepsilon$$

 $0 \leq H(\lambda_2; \Lambda) - \sum_{\nu=0}^n (P_{i_{\nu}} + \varDelta P_{i_{\nu}}) \log \frac{1}{P_{i_{\nu}} + \varDelta P_{i_{\nu}}} \leq \varepsilon.$

Thus, referring to (e) of § 1, we can define a positive number g such as $0 \leq d(\lambda_1, \lambda_2; \Lambda) - \sum_{\nu=0}^{\infty} \Delta P_{i\nu} \log \left(1 + \frac{\Delta P_{i\nu}}{P_{i\nu}}\right) \leq \varepsilon/g.$

If the integral $\int (f_2(x) - f_1(x)) \log \frac{f_2(x)}{f_1(x)} dx$ might be obtained over A, we could set

$$\sum_{\nu=0}^{n} \Delta P_{i_{\nu}} \log \left(1 + \frac{\Delta P_{i_{\nu}}}{P_{i_{\nu}}} \right) = \int_{A} (f_{2}(x) - f_{1}(x)) \log \frac{f_{2}(x)}{f_{1}(x)} dx + \epsilon(A, A)$$

and when $\max_{v} (b_{iv} - a_{iv})$ tends to zero, $\epsilon(A, A)$ also tends to zero.

No. 1]

Then

$$\epsilon(A,\Lambda) \leq d(\lambda_1,\lambda_2;\Lambda) - \int_A (f_2(x) - f_1(x)) \log rac{f_2(x)}{f_1(x)} dx \leq \epsilon/g + \epsilon(A,\Lambda).$$

Thus we can reach the formula

$$d(\lambda_1, \lambda_2) = \int_R (f_2(x) - f_1(x)) \log \frac{f_2(x)}{f_1(x)} dx.$$

And we have also

(a)
(2.1) (b)
(c)

$$d(\lambda_1, \lambda_2) > 0$$
 for $\lambda_1 \neq \lambda_2$
 $d(\lambda_1, \lambda_2) = d(\lambda_2, \lambda_1)$

and corresponding to the relations (1.2), we have

$$d(\lambda_1, \lambda_3) - \{d(\lambda_3, \lambda_2) + d(\lambda_2, \lambda_1)\} = \int_R \left\{ (f_2(x) - f_1(x)) \log \frac{f_3(x)}{f_2(x)} + (f_3(x) - f_2(x)) \log \frac{f_2(x)}{f_1(x)} \right\} dx$$

(2.2) and

$$\begin{cases} (f_2(x) - f_1(x)) \log \frac{f_3(x)}{f_2(x)} + (f_3(x) - f_2(x)) \log \frac{f_2(x)}{f_1(x)} \\ > 0 \leftrightarrow (f_2(x) - f_1(x))(f_3(x) - f_2(x)) > 0 \\ = 0 \leftrightarrow (f_2(x) - f_1(x))(f_3(x) - f_2(x)) = 0 \\ < 0 \leftrightarrow (f_2(x) - f_1(x))(f_3(x) - f_2(x)) < 0. \end{cases}$$

Thus, the proposition described in the probability mass (P_i) has been rewritten in the corresponding probability density (f(x)). And we may call $d(\lambda_1, \lambda_2)$, the écart⁵⁾ between two amounts of information due to the probability distributions $(R, \mathfrak{X}, \lambda_1)$ and $(R, \mathfrak{X}, \lambda_2)$.

In the preceding paper we have had

$$\begin{split} \Delta H &= \sum_{i} \Delta P_{i} \log \frac{1}{P_{i}} - \sum_{i} (P_{i} + \Delta P_{i}) \log \frac{P_{i} + \Delta P_{i}}{P_{i}} \\ &= \sum_{i} \Delta P_{i} \log \frac{1}{P_{i} + \Delta P_{i}} + \sum_{i} P_{i} \log \frac{P_{i}}{P_{i} + \Delta P_{i}} \end{split}$$

then

$$\sum_{i} \Delta P_{i} \log \frac{1}{P_{i}} - \sum_{i} \Delta P_{i} \log \frac{1}{P_{i} + \Delta P_{i}}$$
$$= \sum_{i} (P_{i} + \Delta P_{i}) \log \frac{P_{i} + \Delta P_{i}}{P_{i}} - \sum_{i} P_{i} \log \frac{P_{i} + \Delta P_{i}}{P_{i}}$$

S. Kullback and A. Leibler⁶⁾ were regardless about this, though it may be said that they have derived the formula $\int (f_2(x) - f_1(x)) \log \frac{f_2(x)}{f_1(x)} dx$ from the latter half of the above relation.

K. Suzuki

References

- 1) Darrow, C. K.,: Statistical theories of matter radiation and electricity, Phys. Rev. (1929).
- 2) Wiener, N.,: Cybernetics (1948).
- 3) Shannon, C. E.,: The Mathematical Theory of Communication (1949).
- 4) Weaver, W.,: Recent Contribution to the Mathematical Theory of Communication (1949).
- 5) Kunugi, K.,: Kaisekigaku Yōron (Essentials of Analysis) (1951).
- Kullback, S., and Leibler, A.,: On information and sufficiency, Ann. Math. Stat., 22 (1951).