15. Fourier Series. XII. Bernstein Polynomials

By Shin-ichi Izumi, Masako Satô, and Saburô Uchiyama

Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Z. Suetuna, m.J.A., Feb. 12, 1957)

1. If $f(t)$ is integrable in the closed interval $[0,1]$, then the generalized Bernstein polynomials of $f(t)$ are defined as

$$
\begin{equation*}
P_{n}(x)=P_{n}(x, f)=\sum_{\nu=0}^{n}(n+1) p_{n, \nu}(x) \int_{\nu / n+1)}^{(\nu+1) /(n+1)} f(t) d t \quad(n=0,1,2, \cdots), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{n, \nu}(x)=p_{n, \nu}=\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} . \tag{2}
\end{equation*}
$$

It is known that $P_{n}(x, f)$ tends to $f(x)$ almost everywhere as $n \rightarrow \infty$ and carries many properties of the Fejér mean of the Fourier series of $f(t)$ [1]. From this point of view P. L. Butzer [2] considered the polynomials, corresponding to the partial sums of the Fourier series of $f(t)$ such that
(3) $\quad Q_{n}(x)=Q_{n}(x, f)=(n+1) P_{n}(x, f)-n P_{n-1}(x, f) \quad(n=0,1,2, \cdots)$, and established some fundamental theorems concerning them.

Among others he proved the following
Theorem 1. If $f(t)$ is bounded in the interval $(0,1)$ and its second derivative exists at $t=x$, then $Q_{n}(x, f)$ tends to $f(x)$ as $n \rightarrow \infty$.

Further he raised the question:
Does there exist an integrable function $f(t)$ such that the $Q_{n}(x, f)$ diverges almost everywhere in the interval $(0,1)$?

In the present note we wish to prove the following theorems:
Theorem 2. If the derived Fourier series of $f(t)$ converges absolutely, then $Q_{n}(x, f)$ converges to $f(x)$ everywhere.

Theorem 3. There is a continuous function $f(t)$ with absolutely convergent Fourier series such that $Q_{n}(x, f)$ diverges almost everywhere.

Clearly Theorem 3 is a stronger solution of the problem of Butzer's. We note that, as will be found incidentally in $\S 3$, our Theorem 2 can not hold in general unless the derived Fourier series of $f(t)$ is absolutely convergent.
2. Proof of Theorem 2. Without loss of generality we may suppose that

$$
f(t) \sim \sum_{\lambda=1}^{\infty} a_{\lambda} e^{2 \pi i \lambda t}
$$

Then

$$
\begin{equation*}
Q_{n}(x, f)-f(x)=\sum a_{\lambda}\left[Q_{n}\left(x, e^{2 \pi i \lambda t}\right)-e^{2 \pi i \lambda x}\right] \tag{4}
\end{equation*}
$$

Since we can easily see from [1, p. 21] that*)

$$
\left|Q_{n}\left(x, e^{2 \pi i \lambda t}\right)-e^{2 \pi i \lambda x}\right| \leqq A \lambda,
$$

(4) converges absolutely by the assumption that $\sum \lambda\left|a_{\lambda}\right|<\infty$.

On the other hand

$$
\begin{equation*}
Q_{n}\left(x, e^{2 \pi i \lambda t}\right)-e^{2 \pi i \lambda x} \rightarrow 0 \quad(n \rightarrow \infty) \tag{5}
\end{equation*}
$$

for all fixed λ.
Let ε be any positive number. Then there is an N such that $\sum_{\lambda=N+1}^{\infty} \lambda\left|a_{\lambda}\right|<\varepsilon$, and hence by (5)

$$
\limsup _{n \rightarrow \infty}\left|Q_{n}(x, f)-f(x)\right| \leqq \varepsilon .
$$

Thus we get Theorem 2.
3. Proof of Theorem 3. Let us set

$$
f(t) \sim \sum_{\lambda=1}^{\infty} a_{\lambda} e^{2 \pi i \lambda t}
$$

We suppose that $\sum\left|a_{\lambda}\right|<\infty$. Then

$$
Q_{n}(x, f)=\sum_{\lambda=1}^{\infty} a_{\lambda} Q_{n}\left(x, e^{2 \pi i \lambda t}\right),
$$

where

$$
\begin{gathered}
Q_{n}\left(x, e^{2 \pi i \lambda t}\right)=(n+1) P_{n}\left(x, e^{2 \pi i \lambda t}\right)-n P_{n-1}\left(x, e^{2 \pi i \lambda t}\right) \\
=\frac{1}{2 \pi i \lambda}\left[(n+1)^{2}\left(1-x\left(1-e^{2 \pi i \lambda /(n+1)}\right)\right)^{n}\left(e^{2 \pi i \lambda /(n+1)}-1\right)\right. \\
\left.-n^{2}\left(1-x\left(1-e^{2 \pi i \lambda / n}\right)\right)^{n-1}\left(e^{2 \pi i \lambda / n}-1\right)\right]
\end{gathered}
$$

By the mean value theorem, we have for a ξ between n and $n+1$

$$
\begin{aligned}
& 2 \pi i \lambda Q_{n}\left(x, e^{2 \pi i \lambda t}\right)=2 \xi\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)^{\xi-1}\left(e^{2 \pi i \lambda / \xi}-1\right) \\
& +\xi^{2}\left(e^{2 \pi i \lambda / \xi}-1\right)\left[\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)^{\xi-1} \log \left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)\right. \\
& \left.\quad-\frac{2 \pi i \lambda x}{\xi} e^{2 \pi i \lambda / \xi}\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)^{\xi-2}\right] \\
& \quad-\xi^{2}\left(1-x\left(1-e^{2 \pi i \lambda / \xi)}\right)\right)^{\xi-1} \frac{2 \pi i \lambda}{\xi^{2}} e^{2 \lambda i \lambda / \xi} \\
& =Q^{\prime}+Q^{\prime \prime}+Q^{\prime \prime \prime}
\end{aligned}
$$

If λ / ξ is sufficiently small, then

$$
\left|Q^{\prime}\right| \leqq 4(n+1)\left(1-4 x(1-x) \sin ^{2} \frac{\pi \lambda}{n}\right)^{n / 2} \sin \frac{\pi \lambda}{n} \leqq A \lambda
$$

and similarly $\left|Q^{\prime \prime \prime}\right| \leqq 2 \pi \lambda$; and if $\lambda \geqq \xi$ then

$$
\left|Q^{\prime}\right| \leqq A n, \quad\left|Q^{\prime \prime \prime}\right| \leqq A \lambda .
$$

Hence

$$
\sum_{\lambda=1}^{\infty}\left|a_{\lambda}\right| \frac{\left|Q^{\prime}\right|+\left|Q^{\prime \prime \prime}\right|}{2 \pi \lambda} \leqq A \sum_{\lambda=1}^{\infty}\left|a_{\lambda}\right|
$$

Let us now estimate $Q^{\prime \prime}$ for sufficiently small λ / ξ. We have

[^0]\[

$$
\begin{aligned}
Q^{\prime \prime}= & \xi^{2}\left(e^{2 \pi i \lambda / \xi}-1\right)\left[\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)^{\xi-1} \log \left(1-x\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)\right)\right. \\
& \left.\quad-\frac{2 \pi i \lambda x}{\xi} e^{2 \pi i \lambda / \xi}\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)^{\xi-2}\right] \\
= & \xi^{2} \frac{2 \pi i \lambda}{\xi}\left[-\left(1-x\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)\right) x\left(1-e^{2 \pi i \lambda / \xi}\right)\right. \\
& \left.\quad-\frac{2 \pi i \lambda x}{\xi} e^{2 \pi i \lambda / \xi}\right]\left(1-x\left(1-e^{2 \pi i \lambda / \xi}\right)\right)^{\xi-2}(1+o(1)) \\
= & \xi^{2} \frac{2 \pi i \lambda}{\xi}\left(-\frac{x(1+x)}{2}\left(\frac{2 \pi i \lambda}{\xi}\right)^{2}\right) e^{2 \pi i \lambda x}(1+o(1)) \\
= & -\frac{x(1+x)}{2} \frac{(2 \pi i \lambda)^{3}}{n} e^{2 \pi i \lambda x}(1+o(1))
\end{aligned}
$$
\]

We have also for all λ

$$
\left|Q^{\prime \prime}\right| \leqq A\left(n^{2}+\lambda n\right)
$$

Therefore, if there is an infinitude of n such that a_{λ} vanishes except for $\lambda \leqq n$ with sufficiently small λ / n, then we have for every such n

$$
Q_{n}(x, f)=2 \pi^{2} \frac{x(1+x)}{n} \sum_{\lambda=1}^{n} \lambda^{2} a_{\lambda}(1+o(1)) e^{2 \pi i \lambda x}+\theta_{n} n \sum_{\lambda=n+1}\left|a_{\lambda}\right|+\tau_{n},
$$

where θ_{n} and τ_{n} are bounded.
Thus, in order to prove the theorem, it suffices to take a_{λ} for which there is a sequence (n_{k}) satisfying the above condition, such that

$$
\frac{1}{n_{k}} \sum_{\lambda=1}^{n_{k}} \lambda^{2} a_{\lambda}(1+o(1)) e^{2 \pi i \lambda x}
$$

diverges to infinity almost everywhere and

$$
n_{k_{\lambda=}} \sum_{n_{k}+1}^{\infty}\left|a_{\lambda}\right|=O(1) .
$$

For example, we may take

$$
n_{1}=2^{2}, \quad n_{k+1}=2^{2_{k}} \quad(k \geqq 2)
$$

and

$$
\begin{array}{rlrl}
a_{\lambda} & =\frac{1}{\nu^{2}} & \text { for } \lambda=2^{\nu}, n_{k} \leqq \lambda \leqq k n_{k} \quad(k=1,2, \cdots), \\
& =0 & & \text { otherwise. }
\end{array}
$$

References

[1] G. G. Lorentz: Bernstein Polynomials, Toronto (1953).
[2] P. L. Butzer: Summability of generalized Bernstein polynomials. I, Duke Math. Jour., 22, 617-627 (1955).

[^0]: *) Here and hereafter we denote by A an absolute constant which is not necessarily the same in each occurrence.

