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1o If f(t) is integrable in the closed interval [0, 1], then the
generalized Bernstein polynomials of f(t) are defined as

1 ) P(x)-- P(x, f)--
;0

(n -- 1)p,(x)J f(t)dt (n--0, 1, 2,... ),
l(.n+ 1)

where

It is known that Pn(X, f) tends to f(x) almost everywhere as n-->
and carries many properties of the Fejr mean of the Fourier series
of f(t) [1_. From this point of view P. L. Butzer [2 considered
the polynomials, corresponding to the partial sums of the Fourier
series of f(t) such that
(3) Qn(x)=Qn(x,f)=(n-l)P(x,f)-nP_(x,f) (n=0,1,2,...),
and established some fundamental theorems concerning them.

Among others he proved the following
Theorem 1. If f(t) is bounded in the interval (0, 1) and its second

derivative exists at t=x, then Q(x, f) tends to f(x) as n->.
Further he raised the question:
Does there exist an integrable function f(t) such that the Q(x, f)

diverges almost everywhere in the interval (0, 1)?
In the present note we wish to prove the following theorems:
Theorem 2. If the derived Fourier series of f(t) converges ab-

solutely, then Q(x, f) converges to f(x) everywhere.
Theorem 3. There is a continuous function f(t) with absolutely

convergent Fourier series such that Q(x, f) diverges almost everywhere.
Clearly Theorem 3 is a stronger solution of the problem of Butzer’s.

We note that, as will be found incidentally in 3, our Theorem 2
can not hold in general unless the derived Fourier series of f(t) is
absolutely convergent.

2. Proof of Theorem 2. Without loss of generality we may
suppose that

Then

Qn(x, f)-f(x)-- a,[Q,,(x,
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Since we can easily see from 1, p. 21 that*
Q(x, eizt)-e2izx[._-_ A,

(4) converges absolutely by the assumption that , lazl< .
On the other hand

( 5 ) V,(x, e2)-eix 0 (n )
for all fixed .

Let e be any positive number. Then there is an N such that

a<s, and hence by (5)
lim sup [Q(x, f)-f(x) : e.
n

Thus we get Theorem 2.. Proof of Theorem . Let us set

f(t) ae
=1

We suppose that a<. Then

V(x, f)- azV(x, ei

where
Q(x, ezt)-(n-F 1)P(x, ee’t)--P (x, e’t)

[(n+ 1)(1--x(1 --e/(/)))’(e/(’/)-- 1)

n(1 --x(1 --eiz/")) (e /"-

By the mean value theorem, we have for a $ between n and
n+l
2iQ(, e’) 25(-(-e’))-(e-)

+$(ez/-1)(1-- x(1 ez/))- log (1 --x(1--ez/))

2i2x ex/(l_x(l_ex/))_
_$(l_x(l_e/))_ 2i eZ/

If /$ is sufficiently small, then

[Q’l 4(n+ 1) 1-4x(1-x) sin sin A

and similarly [Q"’] 2; and if $ then

Hence

Let us now estimate Q" for sufficiently small /$. We have

*) Here and hereafter we denote by A an absolute constant which is not neces-
sarily the same in each occurrence.
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x(l+x) (2rii) e.(l+o(1))
2 n

We have also for all i

Therefore, if there is an infinitude of n such that a vanishes except
for n with sufficiently small /n, then we have for every such n

Vn(x, f)-2r x(1q-x) , ta(1q-o(1))exq-O,n
=1 =n+l

where 0, and r, are bounded.
Thus, in order to prove the theorem, it suffices to take ax for

which there is a sequence (n) satisfying the above condition, such
that

1---- az(1 H- o(1))e
n

diverges to infinity almost everywhere and

n

_
a-O(1).

=nk+l
For example, we may take

-2n 2, +
and

1a-- for 2, n kn (k 1, 2,... ),
p2

=0 otherwise.
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