77. Note on Orlicz-Birnbaum-Amemiya's Theorem

By Tetsuya Shimogaki

Mathematical Institute, Hokkaidô University, Sapporo (Comm. by K. KUNUGI, M.J.A., June 12, 1957)

W. Orlicz and Z. Birnbaum proved in [2] that an Orlicz space $L_{\mathfrak{g}}(G)$ is finite if and only if the function \mathcal{P} satisfies the following condition for some $\gamma > 0$:

$$arPhi(2t){\leq}\gamma arPhi(t) \qquad ext{for every} \quad t{\geq}t_{\scriptscriptstyle 0}.$$

(In case of $mes(G) = +\infty$, $\Phi(2t) \leq \gamma \Phi(t)$ for all $t \geq 0$.)

This fact was generalized for arbitrary monotone complete modulars¹⁾ on non-discrete spaces by I. Amemiya in [1] recently. In this note we shall show a new simple proof to this Amemiya's theorem.

As for an Orlicz-sequence space l_{σ} , W. Orlicz and Z. Birnbaum also proved in [2] that l_{σ} is finite if and only if the function φ satisfies the following condition for some $\gamma > 0$:

We shall generalize this fact on arbitrary modulars on discrete spaces.

§1. Let R be a universally continuous semi-ordered space and m be a modular on R. A modular is said to be "finite", if $m(x) < +\infty$ for every $x \in R$. And a modular on R is said to be "semi-upper bounded", if for every $\varepsilon > 0$ there exists γ_{ε} ($\gamma_{\varepsilon} > 0$) such that $m(x) \ge \varepsilon$ implies $m(2x) \le \gamma_{\varepsilon} m(x)$. Now we shall prove

Theorem 1 (I. Amemiya). Suppose that R has no atomic element, then every monotone complete finite modular on R is semi-upper bounded.

Proof. We shall prove first that there exists γ_1 such that $m(x) \ge 1$ implies $m(2x) \le \gamma_1 m(x)$. If such γ_1 can not be found, then we can find a sequence of elements $0 \le x_{\nu} \in R$ ($\nu = 1, 2, \cdots$) such that

(1) $m(2x_{\nu}) > \nu 2^{\nu+1} m(x_{\nu}), N_{\nu} \leq m(x_{\nu}) \leq N_{\nu}+1 \quad (\nu=1, 2, \cdots),$ where $N_{\nu} \quad (\nu \geq 1)$ is a natural number.

(1) implies immediately

(2) $m(2x_{\nu}) > \nu 2^{\nu}(N_{\nu}+1) \quad (\nu=1, 2, \cdots).$

Since R has no atomic element, x_{ν} can be decomposed orthogonally as $x_{\nu} = \sum_{\mu=1}^{(N_{\nu}+1)2^{\nu}} x_{\nu,\mu}$, $m(x_{\nu,\mu}) = m(x_{\nu,\rho})$ $(\mu, \rho=1, 2, \cdots, (N_{\nu}+1)2^{\nu})$ for every $\nu \ge 1$. As $m(x_{\nu}) < N_{\nu}+1$, we have $m(x_{\nu,\mu}) \le \frac{1}{2^{\nu}}$ for every $1 \le \mu \le 2^{\nu}(N_{\nu}+1)$.

¹⁾ For the definition of the modular see H. Nakano [3]. A modular *m* is said to be monotone complete, if $0 \leq a_{\lambda} \uparrow_{\lambda \in A}$, $\sup_{\lambda \in A} m(a_{\lambda}) < +\infty$ implies the existence of $\bigcup_{\lambda \in A} a_{\lambda}$.

If $m(2x_{\nu,\mu}) \leq \nu$ for each μ , we obtain $m(2x_{\nu}) = \sum_{\substack{\nu=1 \ \mu=1}}^{(N_{\nu}+1)2^{\nu}} m(2x_{\nu,\mu}) \leq \nu 2^{\nu}(N_{\nu}+1),$

which contradicts (2).

Therefore we can find a suffix μ_{ν} such that

 $(3) \qquad \qquad m(2x_{\nu,\mu_{\nu}}) \! > \! \nu \qquad \text{for every} \quad \nu \! \geq \! 1.$

Putting $y_{\rho} = \bigcup_{\nu=1}^{\rho} x_{\nu,\mu_{\nu}}$, we obtain $0 \leq y_{\rho} \uparrow_{\rho=1,2,\dots}$ and $\sup_{\rho=1,2,\dots} m(y_{\rho}) \leq \sum_{\nu=1}^{\infty} m(x_{\nu,\mu_{\nu}})$ ≤ 1 . Since *m* is monotone complete by assumption, there exists $x_0 \in R$ such that $x_0 = \bigcup_{\rho=1}^{\omega} y_{\rho}$. For this x_0 , however, we have by (3) $m(2x_0) \geq m(2y_{\nu}) \geq m(2x_{\nu,\mu_{\nu}}) \geq \nu$ for every $\nu \geq 1$.

This yields $m(2x_0) = \infty$ and contradicts that m is finite. Thus we showed that there exists γ_1 such that $m(x) \ge 1$ implies $m(2x) \le \gamma_1 m(x)$.

For any ε (1> ε >0), we set $\gamma_{\varepsilon} = Max(\gamma_1, \frac{1}{\varepsilon} \sup_{\varepsilon \le m(x) \le 1} m(2x))$. Then it

is easily seen that this γ_{ε} satisfies the condition of "semi-upper bounded". Thus the proof is completed.

§2. Here let R be a discrete semi-ordered linear space and e_{λ} $(\lambda \in \Lambda)$ a basis of R, i.e. $e_{\lambda} \frown e_{\gamma} = 0$ for $\lambda \neq \gamma$ and for each positive element $x \in R$ we can find uniquely a system of real numbers $\xi_{\lambda} \ge 0$ $(\lambda \in \Lambda)$ such that $x = \bigcup_{\lambda \in \Lambda} \xi_{\lambda} e_{\lambda}$.

Thus every $x \in R$ corresponds uniquely to a system of real numbers $(\xi_{\lambda})_{\lambda \in A}$. We say an element $x = (\xi_{\lambda})_{\lambda \in A}$ is finite dimensional, if $\xi_{\lambda} = 0$ except for finite numbers of $\lambda \in A$.

Let *m* be a modular on *R*. Putting $\varphi_{\lambda}(\xi) = m(\xi e_{\lambda})$, we obtain a modular $\varphi_{\lambda}(\xi)$ ($\lambda \in \Lambda$) on the space of real numbers, that is, i) $\varphi_{\lambda}(0)=0$; ii) $\lim_{\xi \to \eta = 0} \varphi_{\lambda}(\xi) = \varphi_{\lambda}(\eta)$; iii) $\lim_{\xi \to +\infty} \varphi_{\lambda}(\xi) = +\infty$; iv) there exists a real number

 η (depending on each φ_{λ}) such that $\varphi_{\lambda}(\eta) < +\infty$ for every $\lambda \in \Lambda$.

Conversely if $\varphi_{\lambda}(\hat{\varsigma})$ satisfies the above conditions for every $\lambda \in \Lambda$, then the set of such systems of real numbers $(\hat{\varsigma}_{\lambda})_{\lambda \in \Lambda}$ that

$$\sum_{\lambda \in I} \varphi_{\lambda}(\alpha \xi_{\lambda}) < +\infty$$
 for some $\alpha > 0$

becomes a discrete modulared space, putting its modular as $m(x) = \sum_{\lambda \in A} \varphi_{\lambda}(\xi_{\lambda}) \quad \text{for} \quad x = (\xi_{\lambda})_{\lambda \in A}.$

And we denote this discrete modulared space by $l(\varphi_{\lambda})_{\lambda \in A}$. This modulared space is always monotone complete.

A modular *m* is said to be simple if m(x)=0 implies x=0. From the above, we can see that a modular *m* on discrete space *R* is simple if and only if $\varphi_{\lambda}(\xi) > 0$ for every $\xi > 0$ and $\lambda \in \Lambda$.

If $\varphi_{\lambda}(\xi)$ is equal to a single function $\varphi_{0}(\xi)$ for every $\lambda \in \Lambda$, then this modular is said to be *constant* (cf. [3, §55]), and it is nothing but a generalized Orlicz discrete space. A constant modular m on R is

311

No. 6]

finite if and only if $\varphi_0(2\xi) \leq \gamma \varphi_0(\xi)$ $(0 \leq \xi \leq \xi_0)$ for some $\gamma > 0$ and $\xi_0 > 0$ that is, $m(2x) \leq \varepsilon$ implies $m(2x) \leq \gamma m(x)$ (cf. [3]).

This fact, however, is not valid for arbitrary modular on an infinite dimensional discrete space, even if it is simple. The example will be showed in the following.

Theorem 2. Let m be a monotone complete modular on a discrete space R. In order that m is finite it is necessary and sufficient that it satisfies the following conditions:

i) $\varphi_{\lambda}(\xi) < +\infty$ for every $\xi \geq 0$ and $\lambda \in \Lambda$;

ii) there exist positive numbers ε and ε' $(0 < \varepsilon < \varepsilon')$ such that $\varepsilon \leq m(x) \leq \varepsilon'$ implies $m(2x) \leq \gamma m(x)$ for some $\gamma > 0$.

Proof. Necessity. Let *m* be finite. Then i) is obvious because of $\varphi_{\lambda}(\hat{z}) = m(\hat{z}e_{\lambda})$ ($\lambda \in \Lambda$). In order to prove ii), we suppose that ii) fails to be true. Then we construct consecutively an orthogonal sequence of elements $0 \leq x_{\nu} \in R$ ($\nu = 1, 2, \cdots$) such that $\frac{1}{2^{\nu+1}} \leq m(x_{\nu}) \leq \frac{1}{2^{\nu}}$, $m(2x_{\nu})$ $\geq 2^{\nu}m(x_{\nu})$ and x_{ν} is finite dimensional for every $\nu \geq 1$. Suppose that x_1, x_2, \cdots, x_n had been taken already. Since $[x_1, \cdots, x_n]R^{2^{\nu}}$ is finite dimensional, we can find a positive number γ' such that $\frac{1}{2^{\nu+2}} \leq m(x)$ $\leq \frac{1}{2^{\nu+1}}$, $x \in [x_1, \cdots, x_n]R$ implies $m(2x) \leq \gamma' m(x)$ by virtue of i). If there exists positive number γ'' such that $\frac{1}{2^{\nu+2}} < m(x) \leq \frac{1}{2^{\nu+1}}$, $x \in (1-[x_1, \cdots, x_n])R$ implies $m(2x) \leq \gamma'' m(x)$, then ii) holds true for $\varepsilon = \frac{1}{2^{\nu+2}}$, $\varepsilon' = \frac{1}{2^{\nu+1}}$ and $\gamma = \gamma' + \gamma''$.

Therefore we can find $0 \leq x \in (1 - [x_1, \cdots, x_n])R$ which satisfies $\frac{1}{2^{\nu+2}} < m(x) \leq \frac{1}{2^{\nu+1}}, \qquad m(2x) > 2^{\nu+1}m(x).$

Since *m* is semi-continuous, there exists $y \in R$ $(0 \le y \le x)$ such that $\frac{1}{2^{\nu+2}} \le m(y) \le \frac{1}{2^{\nu+1}}$, $m(2y) > 2^{\nu+1}m(y)$ and *y* is finite dimensional. Here we obtain $x_{\nu+1}$, putting $x_{\nu+1} = y$. For such a sequence $\{x_{\nu}\}$ we have $m(\bigcup_{\nu=1}^{n} x_{\nu}) \le 1$. Thus there exists $\bigcup_{\nu=1}^{\infty} x_{\nu} = x_{0}$. However, we have for this x_{0} $m(2x_{0}) \ge \sum_{\nu=1}^{\infty} 2^{\nu} \frac{1}{2^{\nu+1}} = +\infty$,

which contradicts that m is finite on R. Thus ii) is proved.

Sufficiency. Let x be an element of R such that $m(x) < \infty$. Then we can decompose x as x=y+z, such that $m(y) \leq \varepsilon'$ and z is finite dimensional. i) implies $m(2z) < +\infty$ and existence of y_0 such that $y_0 \geq |y|$ and $\varepsilon \leq m(y_0) \leq \varepsilon'$. Then we have by ii) $m(2y_0) \leq \gamma m(y_0)$, and m(2x)

312

²⁾ For a set $A \subset R$, [A]R means the least normal manifold containing A.

 $\leq m(2z)+m(2y_0)<+\infty$. Thus we obtain that m is finite.

- **Remark 1.** In the above theorem ε (which appears in the condition ii)) can be taken arbitrary small by varying γ , but ε' can not be.
- **Remark 2.** In the above theorem, the assumption: " $\varepsilon \leq m(x) \leq \varepsilon'$ " can not be replaced by " $0 < m(x) \leq \varepsilon'$ " even if *m* is simple.

For example, set

$$arphi_{\mathbf{\nu}}(\xi) = egin{cases} rac{1}{2^{\mathbf{\nu}}} \xi & ext{for} & 0 \leq \xi \leq rac{1}{2^{\mathbf{\nu}}}, \ \left(rac{2^{\mathbf{\nu}+1}-1}{2^{\mathbf{\nu}}}
ight) \left(\xi - rac{1}{2^{\mathbf{\nu}}}
ight) + rac{1}{2^{2\mathbf{\nu}}} & ext{for} & rac{1}{2^{\mathbf{\nu}} \leq \xi \leq rac{1}{2^{\mathbf{\nu}-1}}, \ 2\xi - rac{1}{2^{\mathbf{\nu}-1}} & ext{for} & rac{1}{2^{\mathbf{\nu}-1}} \leq \xi, \end{cases}$$

and consider modulared sequence space $l(\varphi_1, \varphi_2, \cdots)$. Then $l(\varphi_1, \varphi_2, \cdots)$ is finite and simple as easily seen. On the other hand, putting $c_n = \frac{1}{2^n} e_n$, where e_n are the natural bases on sequence spaces, we have

$$(2c_n) \geq 2^n m(c_n) \quad ext{and} \quad m(c_n) \leq rac{1}{2^{2n}}.$$

Thus the example is established.

Finally I wish to express my gratitude to Professor H. Nakano for his usual guidance and warm encouragement.

References

- I. Amemiya: A generalization of the theorem of Orlicz and Birnbaum, Jour. Fac. Sci. Ser. 1, 12, no. 2, 60-64 (1956).
- [2] W. Orlicz and Z. Birnbaum: Ueber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 3, 1-67 (1931).
- [3] H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo (1950).

No. 6]