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W. Orlicz and Z. Birnbaum proved in 2 that an Orlicz space L(G)
is finite if and only if the function satisfies the following condition
for some 7> 0:

(2t)Tq(t) for every t>to.
(In case of rues(G)- + oo, c$(2t)/(t) for all t>0.)

This fact was generalized for arbitrary monotone complete modu-
lars ) on non-discrete spaces by I. Amemiya in [1] recently. In this
note we shall show a new simple proof to this Amemiya’s theorem.

As for an 0rlicz-sequence space l, W. Orlicz and Z. Birnbaum
also proved in [2] that l is finite if and only if the function
satisfies the following condition for some />0:

(2t)/((t) for every O<__t<to.
We shall generalize this fact on arbitrary modulars on discrete

spaces.
1. Let R be a universally continuous semi-ordered space and m

be a modular on R. A modular is said to be "finite ", if re(x)< A-o
for every x eR. And a modular on R is said to be "semi-upper
bounded", if for every >0 there exists % (y>0) such that m(x)
implies m(2x)7n(x). Now we shall prove

Theorem 1 (I. Amemiya). Suppose that R has no atomic element,
then every monotone complete finite modular on R is semi-upper
bounded.

Proof. We shall prove first that there exists 7 such that m(x)l
implies m(2x)7m(x). If such 7 can not be found, then we can find
a sequence of elements 0x eR (- 1, 2,...) such that
1 ) m(2x)r2+m(x), Nm(x)<NA-1 (--1, 2,...),

where N (>1) is a natural number.
(1) implies immediately
2 m(2x) r2(N+ 1) (-- 1, 2,... ).

Since R has no atomic element, x can be decomposed orthogonally
(N+l)2

as x-- , x,, m(x,)--m(x,p) (t,p-1,2,...,(N+l)2) for every

v>l As m(x)<N+l, we have m(x)<1 for every l</z2(N+l).
2

1) For the definition of the modular see H. Nakano [3]. A modular m is said
to be monotone complete, if 0az ’ ze, sup m(a)<+ implies the existence of

A

A
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If m(2X)<, for each /, we obtain

m(2x)- ] m(2x,),2(N4 1),

which contradicts (2).
Therefore we can find a suffix such that

3 ) m(2x,.) for every 1.
Putting y= x,,, we obtain 0 y and sup m(y) m(x,)

1. Since m is monotone complete by assumption, there exists x0 e R

such that o-- Y. For this x0, however, we have by (3)

m(2Xo)m(2y)m(2x,), for every ,1.
This yields m(2x0)- and contradicts that m is finite. Thus we
showed that there exists 7 such that ()1 implies m(2x)7m(x).

For any e (1e> 0), we set 7 Max (7, 1_ sup m(2x)). Then it
m()l

is easily seen that this % satisfies the condition of "semi-upper bounded".
Thus the proof is completed.

2. Here let R be a discrete semi-ordered linear space and e
(2eA) a basis of R, i.e. eer-0 for 27 and for each positive
element x eR we can find uniquely a system of real numbers
(2e.A) such that - $ez.

Thus every e R corresponds uniquely to a system of real numbers
($)e- We say an element -($z)e is finite dimensional, if $-0
except for finite numbers of 2 e A.

Let m be a modular on R. Putting ($)-m($e), we obtain a
modular ($) (2e A) on the space of real numbers, that is, i) (0)-0;
ii) lim ($)=z(v); iii) lim ($)-+; iv) there exists a real number
-0 +
(depending on each ) such that (v)< for every a e A.

Conversely if ($) satisfies the above conditions for every 2 e A,
then the set of such systems of real numbers ($),e that

($)< + for some

becomes a discrete modulared space, putting its modular as

re(x) ($) for z-($)e.
A

And we denote this discrete modulared space by/();,e- This modu-
lared space is always monotone complete.

A modular m is said to be simple if m()-0 implies x-0. From
the above, we can see that a modular on discrete space R is simple
if and only if ($)>0 for every $>0 and 2e A.

If ($) is equal to a single function 0($) for every 2 e A, then
this modular is said to be constant (cf. [3, 55]), and it is nothing but

a generalized Orlicz discrete space. A constant modular m on R is
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finite if and only if cp0(2$)/cp0($) (0$$0)for some 7>0 and $0>0
that is, m(2x)e implies m(2x)Tm(x) (cf. 3).

This fact, however, is not valid for arbitrary modular on an infinite
dimensional discrete space, even if it is simple. The example will be
showed in the following.

Theorem 2. Let m be a monotone complete modular on a discrete
space R. In order that m is finite it is necessary and sucient that
it satisfies the following conditions:

i) ($)<+ for every 0 and A;
ii) there exist positive numbers e and e’ (0<s<e’) such that

em(x)e’ implies m(2x)Tm(x) for some O.
Proof. Necessity. Let m be finite. Then i) is obvious because

of ($)-m($e),) ( A). In order to prove ii), we suppose that ii) fails
to be true. Then we construct consecutively an orthogonal sequence

of elements 0xeR (,-1, 2,...) such that .2+ 2,
2m(x) and x is finite dimensional for every ,1. Suppose that
x, x:,..., x had been taken already. Since [x,. ., xJR is finite

dimensional, we can find a positive number 7’ such that-2+ m(x)
2, x x,..., x,R implies m(2x)7’m(x) by virtue of i). If there

exists positive number 7" such that 2. <m(x)< 1 x .,
x)R implies m(2x)7"m(x), then ii)holds true for e-, z’- 1

2+1
and

Therefore we can find 0xe(1--x,..., x)R which satisfies---.< m(x)< 1 m(2x) >2+m(x).
2+ 2+,

Since m is semi-continuous, there exists y eR (Oyx) such that
1 <re(y)< 1

2+: -, m(2y) >2+m(y) and y is finite dimensional. Here

we obtain x+, putting x+=y. For such a sequence {x} we have

m(x)l. Thus them exists x-x0. However, we have for this Xo

m(2xo) 

which contradicts that m is finite on R. Thus ii) is proved.
Suciency. Let x be an element of R such that re(x)< . Then

we can decompose x as x=y+z, such that m(y)e’ and z is finite
dimensional, i) implies m(2z)
and em(yo)e’. Then we have by ii) m(2yo)m(yo), and m(2x)

2) For a set AcR, lAIR means the least normal manifold containing A.
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m(2z)+m(2Yo)< + . Thus we obtain that m is finite.
Remark 1. In the above theorem e (which appears in the condition

ii)) can be taken arbitrary small by varying % but e’ can not be.
Remark 2. In the above theorem, the assumption: "em(x)e’"

can not be replaced by "O<m(x)e’" even if m is simple.
For example, set

15 for 022
2+ 1 $-- +- for 2_$2-;’

1 for
2_

25
2_

and consider modulared sequence space/(p,, q:,...). Then l(cp,, p.,...)
is finite and simple as easily seen. On the other hand, putting

=-21-en,,, where en are the natural bases on sequence spaces, we haveCn

(2C):>2m(Cn) and m(c,)-12-.
Thus the example is established.

Finally I wish to express my gratitude to Professor H. Nakano
for his usual guidance and warm encouragement.
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