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1o In many representation theorems of different branches of ab-
stract mathematics, for example, representation of ordered sets by cuts,
that of lattices by sets of ideals, the conjugate spaces of Banach spaces,
or the duality of groups, there seem to appear some similar concep-
tions. In order to deal with those representation theorems simultane-
ously, we made an attempt to set up a concept of a universal mathe-
matical structure, in which the main rSle is played by some selected
applications of a system to a system, which we call homomorphisms,
but they may be continuous mappings in topological spaces, order-
preserving mappings in ordered sets or linear operators in linear spaces.

The definitions of our structure and some results of them will be
stated in this note, but we omit the detail of proofs which, as well
as the applications to individual specialized systems, will be published
elsewhere.

2. Let (R) be a family of sets. A set in (R) is called a system.
If X and Z are systems and ZX, then Z is called a subsystem of
X. We assume that, to each pair of systems X and Y, a family
Horn (X, Y) of applications which map X into Y is distinguished. An
application p in Hom (X, Y) is called a homomorphism of X in Y.
Further we assume that those homomorphisms and the family (R) satisfy
the following axioms which fall into five groups (A)-(E).

In these statements of axioms, the letters X, Y and Z denote
systems.

The axioms of the group (A) are concerned with the conditions
for an application of a system to be a homomorphism.

(A1) If ZX, and Iz is the identical mapping on Z, then
Iz e Hom (Z, X).

(A2) If q Horn X, Z) and Horn Z Y then Zo Horn (X, Y
(A3) If q Horn (X, Y) and q(X) Z, then q e Horn (X, Z).
The axioms of the group (B) are concerned with the conditions

for a set to be a system.
(B1) If q Horn (X, Y), then o(X) (R).

(B2) If qHom(X, Y) and Zo(X)@4), then o-l(Z)e(R).1

(B3) There exists a one element system [e} such that for any
system X the application which maps each element x of X onto e is

1) (x)={(x); xex}, -(z)={x; (x)ez}.
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a homomorphism of X in {e}.)
If o e Horn (X, Y) and p(X)- Y, then o is called a homomorphism

of X on Y, and Y is called homomorphic to X. A homomorphism
of X in Y is called an isomorphism, if it is one-to-one and its inverse
is also a homomorphism of (p(X) on X. If there exists an isomorphism
of X on Y, then they are called isomorphic.

Before stating the remaining axioms we shall introduce the defini-
tion of the direct product.)

DEFINITION 1. Let X; A, where A is a set of indices, be a
family of systems. A system W, denoted by H Xz, is called the direct

product of Xz’s, if W satisfies the following conditions:
i) W is a set-product of Xz’s, that is, there exists a one-to-one

correspondence between an element w of W and a sequence {x] of
elements xz e Xz. This correspondence will be denoted by w-r[xz] and

xz-pz(w), where w corresponds to {x}.
ii) pz Ho.m W, Xz) for each A.
iii) If Z is a system and o Horn (Z, X) for each A, then

the mapping o which is defined by q(z)--r[pz(z)} for z eZ is a homo-

morphism of Z in W.
Especially if the set A is finite and A-{lr2,..., n}, then we may

use the following notation: XX... X--H Xz. If each Xz is a

same set X, then X is defined as II Xz.
Now we shall give a further axiom (C)"
( C ) For any family {Xz; A} of systems, where A is a set of

indices, there exists a system which is the direct product H Xz.
It is easily seen that if both U and W are direct products of

Xz’s, then U and W are isomorphic.
Next, let X and Y be any systems. We put Y-Y for each

x eX and make the direct product Y. Then Y’r consists of all ap-
plications from X in Y. Hence Horn (X, Y) is considered as a subset
of YZ. Under this interpretation we give the fourth axiom (D).

(D) Ho.m (X, Y) is a subsystem of
The family (R) may be a very vast one. For example it may be

a family of whole topological spaces. Here, to avoid some pathology

2) It seems to be convenient in many investigations to add the following axiom"

(B4) If Xx, A, are systems and N Xz= , then N Xx is a system.
But this axiom is not necessary in this paper.
3) This definition and Theorem 1 are stated by V. S. Krishnan: Closure operations

on c-structure, Indagationes Math., 15, 317-329 (1953).
4) For example, the family of all totally ordered sets does not satisfy this axiom.

In Banach spaces, the definition of direct products must be modified.
5) The set of all representations of a group by n-square matrices does not make

itself a group, and our theorems can not be applied to Tannaka’s duality theorem.
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of the set-theory, we assume
(E) For any subfamily % of (R) such that each system in % has

a power less than some cardinal number, a family of systems can
be selected in such a way that this family makes itself a set with
some power, and any system in is isomorphic to one of the systems
in .

:. Let p and be homomorphisms of a system X. We say
that (p and are equivalent if there exists an isomorphism of p(X)
on (X) with =0p. Let Horn (X) be the family of all homomorphisms
of X. If we identify equivalent homomorphisms in Horn (X), then by
the axiom (E), Horn (X) makes itself a set with some power.

If we introduce an order between homomorphisms in Horn (X)
in such a way that p implies that there exists a 0eHom ((X),
o(X)) with o-, then Horn(X) becomes a partially ordered set.
But by the definition of the direct product and the axioms (C) and
(B3) we have

THEOREM 1. Hom (X) is a complete lattice by the order
Let (P be a subset of Horn (X), and let V (P denote the least upper

bound of homomorphisms in q), then we can easily see
LEMM. 1. Put --V (P. We have (Xo)--(xl), Xo, xl X, if and

only if q(x0)-o(x) for any
Hereafter we fix a system L, and Hom (X, L) is denoted by X*.

The first main theorem which is deduced from the axioms (A)(B)(C)
(D) and (E) is the following

THEOREM 2. (1) Let X be a system. If we put (p)--p(x) for
x X and q X*, then & X** -Hom (X*, L).

( 2 ) If we put r(x)--, then Horn (X, X**).
(3) is equivalent to V Horn(X, L).
4 ) The necessary and sucient condition that we have Ix-

V Horn (X, L) 6) is that for a sufciently large set A of indices, X is
isomorphically embedded in LA.

Similarly, by putting b($)-$(q) for oeX* and $eX**, we have
a homomorphism peX***, and putting r(o)-5, we have a homo-
morphism r Horn (X*, X***). But by the definition of Horn (X, L)
--X*, X* is a subsystem of L, and hence by Theorem 2 (3) and (4),
r is an isomorphism. But further we have

THEOREM 3. I Let 7 be a homomorphism in X***--Hom (X**,
L). Put q(x)--v(), for x eX, (-(x), see Theorem 2. (1)), then we
have o X*-Horn (X, L).

( 2 ) Put )(7)--o, then we have Hom (X***, X*).
(3) The contraction of ) on -(X*) is the inverse mapping of

the isomorphism

6) Ix is the identical mapping on X, see axiom (A1).
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4. By the axiom (A2), for any Hom (X, Z) and p Hom (Z, Y),
we have a homomorphism q)eHom (X, Y). Here we have

THEOREM 4. ( 1 ) Put *qa()--q, then we have *q) Horn (Horn (X,
Z), Horn (Z, Y)).

2 ) Put O*(q)--qO, then we have * Horn (Horn (Z, Y), Horn (X,
Y)).

(3) The mapping q)*q) is a homomorphism of Hom (Z, Y) in
Horn (Horn (X, g), Horn (X, Y)).

(4) The mapping -->* is a homomorphism of Horn (X, Z) in
Horn (Horn (Z, Y), Horn (X, Y)).

(5) If is a homomorphism of X on Z, then * is an iso-
morphism of Horn (Z, Y) in Horn (X, Y).

(6) If 0 is an isomorphism of X in Z, and if any homomor-
phism of O(X) in Y can be extended to a homomorphism of Z in Y,
then * is a homomorphism of Horn (Z, Y) on Horn (X, Y).

Now we shall give one more definition:
DEFINITION 2. A subsystem (P of Horn (Z, Y) is called admissible

on Z, if the mapping which maps the pair (o, z) onto q(z) where
q e Hom (Z, Y) and z eL is a homomorphism of the direct product
qVZ in Y.

We add a proposition in Theorem 4.

THEOREM 4. 7 ) Let (P be a subsystem of Hom (Z, Y). Put
*(P--{*o; (p e (P} where *q is a homomorphism of Horn (X, Z) in Horn (X,
Y) (see Theorem $ (8)). If (P is admissible on Z, then *(P is admissible
on Horn (X, Z).

The statement (4) in Theorem 4 is especially interested. Really
by putting Y--L, we have the

COROLLARY. To each homomorphism in Horn (X, Z), there cor-
responds homomorphically a homomorphism * in Horn (Z*, X*).

This proposition gives us a conception similar to the conjugate
operator in Banach spaces. Statements (5) and (6) in Theorem 4 are
similarly paraphrased.

If 0 is a homomorphism in Hom(X, Z), then 0* is a homomorphism in
Hom (Z*, X*), and similarly we have a homomorphism 0"* in Hom (X**,
Z**). Here we have

LEMMA 2. If (x)--Z, then **()-- (--(x), see Theorem 2).
Finally we add
THEOREM 5. For any systems X, Y and Z, Horn (X, Horn(Z, Y))

is isomorphic to Horn (Z, Horn (X, Y)).
Hom (X, Hom (Z, Y)) can be regarded as the set of all functions

5(x, z) into Y with two arguments x e X and z e Z such that for a fixed

7) In Banach spaces, our definition of the di.rect product does not hold, and in
applying our theorems on Banach spaces, considerable modifications are necessary.
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x X, they are homomorphisms of Z in Y and, for a fixed z e Z, they
are homomorphisms of X in Y. Such a function $(x, z) is, so to speak,
a bi-homomorphism similar to the bi-linear operator in linear spaces.
For example, $ (o, x) --> (p(x) where (p e Horn (X, Y) and x e X is a bi-
homomorphism of Horn (X, Y) and X in Y, and the function $: (q, )
-->p, where o e Horn (X, Z) and Horn (Z, Y), is a bi-homomorphism
of Horn (X, Z) and Horn (Z, Y) in Hom (X, Y) (see Theorem 4). Theorem
5 is useful in dealing with such functions. Especially putting Y--L
and Z-X* in Theorem 5 we have the

COROLLARY. Horn (X, X**) is isomorphic o Horn (X*, X*).
This corollary seems useful when X is reflexive, that is, if X--X**,

or when we discuss about the reflexibility of X.


