59. A Remark on a Subdomain of a Riemann Surface of the Class O_{HD}

By Shin'ichi MORI Ritsumeikan University (Comm. by K. KUNUGI, M.J.A., May 13, 1958)

In this paper we shall use the compact Hausdorff space due to H. L. Royden. Let W be an open Riemann surface and BD the class of piecewise smooth functions defined on W and bounded on it having a finite Dirichlet integral D[f]. To make use of the theory of normed ring, we introduce in BD a new norm given by

$$||f|| = \sup |f| + \sqrt{D[f]}.$$

We denote by BD^* the completion of BD by means of this norm. Then BD^* is a normed ring A. The set of the maximal ideals constructs a compact Hausdorff space W^* by means of a certain topology [1], and then W is embedded in W^* as open and dense subset. We denote by K the class of BD with compact carrier, and denote by \overline{K} the class of functions which are limits in BD of sequences from K. Next, we denote by $\Gamma(W)$ or $\Delta(W)$ the set of the maximal ideals which contain K or \overline{K} respectively, and we call $\Gamma(W)$ the ideal boundary of F, $\Delta(F)$ the harmonic boundary of F [3]. We notice that all functions of BD are extended continuously on W^* [1], and all functions of class HBD attain its maximum and minimum on Δ , consequently it is determined uniquely by the distribution of the values on $\Delta(F)$ [5]. We shall prove the following

Theorem. If $F \in O_{HD} - O_G$, any non-compact domain G of F belongs to the class SO_{AD} .

Proof. By $G \in SO_{AD}$, we designate that all functions which are continuous on \overline{G} and belong to class AD on G must reduce to a constant, provided that its real part vanishes on the relative boundary of G.

First of all, we notice that $\Delta(F)$ consists of only one point. Because, by our assumption there are no non-constant *HBD* on *F*, consequently \overline{K} is the maximal ideal of *A*. In the following we intend to lead to contradiction by denying our proposition.

Suppose that $G \in SO_{AD}$, then there exists an analytic function f = u + iv such that it is analytic on G, continuous on \overline{G} (closure of G) and u vanishes on the relative boundary of G.

Since the number of the branch points is countable, there is a level curve of u on which there are no branch points. Let L'_{λ} be the level curve of u(p) with height λ on which there are no branch points,

and let G_{λ} be the subdomain of G such that the relative boundary of G_{λ} consists of some components of L'_{λ} . Then u is of the class HD, because f is of the class AD. According to A. Mori's theorem, u is of the class HBD, and it attains either maximum or minimum on the relative boundary of G_{λ} [4]. Without loss of generality, we can assume that $u > \lambda$ in G_{λ} . Let L_{λ} be the component of the relative boundary of G_{λ} and let $U(p_0)$ be a neighbourhood of $p_0(\in L_{\lambda})$ which is an image of parameter disc. We now consider a level curve L(v) of v passing p_0 . Let $L^0(v)$ be the connected part of L(v) which is in $G_{\lambda} \cap U(p_0)$ and contains p_0 .

Next, we take on $L^0(v)$ such a point q_0 that satisfies the following condition: there are no branch points on the arc p_0q_0 , which is the connected part of $L^0(v)$. This is possible, because the number of the branch points is countable. Next let L(p) be the open arc of the level curve of u passing p which is any inner point of p_0q_0 , and suppose that there are no branch points on L(p) except possibly its both ends. Let D be the point-set consisting of all L(p). Then we can prove that D is a domain and u attains constants respectively on each components of the relative boundary of D [6].

The analytic function f=u+iv is univalent in D. For v is monotone on each L(p). Thus we can consider the conformal image of D in the complex ζ -plane by means of if=-v+iu $(=\xi+i\eta)$. Let D_{ζ} be the conformal image of D. Each component of the relative boundary of D consists of a half-straight line or a segment parallel to η -axis. Let \widetilde{L}_{λ} and \widetilde{L}_{μ} be respectively the image of $L(p_0)$ and $L(q_0)$.

We put a cut along each relative boundary component of Dexcept \tilde{L}_{λ} and \tilde{L}_{μ} , and we construct the double \hat{D}_{τ} by combining the upper or lower side of the cut respectively with the upper or lower side of the other domain indirectly conformal to D_{τ} . This double is of hyperbolic type and does not belong to O_{HD} . For symmetric extension of -v = R[if] is harmonic on \hat{D}_{τ} and its Dirichlet integral with respect to \hat{D}_{τ} is finite.

We denote by \hat{D}_{ζ}^* the compactification of \hat{D}_{ζ} by means of Royden's method. We notice that the ideal boundary points of \hat{D}_{ζ} corresponding to the end-point of the cuts are not the harmonic boundary points. For we can know easily that the end-point of the cut is the removal singular point with respect to HBD on \hat{D}_{ζ} , consequently any element of HBD does not attain neither the maximum nor minimum at this point. Now each end-point of the cut is separated from the other end-points by a certain closed curve, consequently the ideal boundary points of \hat{D}_{ζ} corresponding to each end-point of the cut are respectively

separated from the other.

Let ζ_0 be an end-point of a cut, and let $\Im(\zeta_0)$ be the set of the ideal boundary points corresponding to ζ_0 . If $\Im(\zeta_0)$ contains the harmonic boundary points, we can construct the function $f (\in HBD(\widehat{D}_{\zeta}))$ such as

$$\begin{array}{ll} f = 0 & \text{on } \mathcal{L}(\hat{D}_{\varsigma}) - \Im(\zeta_0) \\ \mp 0 & \text{on } \Im(\zeta_0), \end{array}$$

here $\Delta(\hat{D}_{\tau})$ is the harmonic boundary of \hat{D}_{τ} .

We decompose f^2 , i.e. [2]

$$f^2 = u + \varphi, \quad u \in HBD(\hat{D}_{z}), \quad \varphi \in \overline{K}(\hat{D}_{z}),$$

then $u=f^2$ on $\Delta(\hat{D}_{\chi})$, since $\varphi\equiv 0$ on $\Delta(\hat{D}_{\chi})$. This is absurd. In fact according to our notice, the function of class $HBD(\hat{D}_{\chi})$ does not take neither maximum nor minimum on $\Im(\zeta_0)$.

Next let φ be an element of $\overline{K}(F)$ with respect to F, and let $\hat{\varphi}$ be the symmetric extension of φ to \hat{D}_{χ} . Then $\hat{\varphi}$ belongs to $\overline{K}(\hat{D}_{\chi})$ with respect to \hat{D}_{χ} . We shall give the reason in the following.

Let $\{\varphi_n\}_1^\infty$ be a sequence such that each φ_n belongs to K(F), i.e. of which carrier compact, and $\varphi_n \to \varphi$ (in BD). We construct $\hat{\varphi}_n$ which is the symmetric extension of φ_n to \hat{D}_{ζ} . Then $\hat{\varphi}_n$ belongs to $\overline{K}(\hat{D}_{\zeta})$ and $\hat{\varphi}_n \to \hat{\varphi}$ (in BD). The latter is evident, therefore we shall verify the former. According to the Royden's decomposition

$$\hat{\varphi}_n = S + \chi, \quad S \in HBD(\widehat{D}_{z}), \quad \chi \in \overline{K}(\widehat{D}_{z}),$$

and $\hat{\varphi}_n$ vanishes on the harmonic boundary of \hat{D}_{ζ} , because there are no harmonic boundary points corresponding to the end-points of the cuts. Therefore S=0 on the harmonic boundary of \hat{D}_{ζ} , hence $S\equiv 0$ on \hat{D}_{ζ} [5]. Thus we know that $\hat{\varphi}_n$ belongs to $\overline{K}(\hat{D}_{\zeta})$. From this we see that $\hat{\varphi}$ belongs to $\overline{K}(\hat{D}_{\zeta})$, here φ is any element of the class $\overline{K}(F)$.

Next we shall show that $\overline{D} \cap \varDelta(F)$ is not empty set, here \overline{D} is the closure of D with respect to F^* (compactification of F), and $\varDelta(F)$ is the harmonic boundary. Suppose that $\overline{D} \cap \varDelta(F)$ is empty set. Then at each point M of $\overline{D}-D$, there exists an element φ of $\overline{K}(F)$ such that $\varphi(M) \neq 0$. Let U(M) be a neighbourhood of M such that

$$U(M) = \{\widetilde{M}; \varphi^2(M) > \varphi^2(\widetilde{M}) - \varepsilon > 0: \widetilde{M} \in F^*\}.$$

Applying the finite covering property, we can construct the function $\psi \in BD(F)$ such that ψ is non-negative and does not vanish on $\overline{D}-D$. Now let g(p;q) be the Green function of F, here $q \in D$. Then $\chi \equiv g + \psi$ is of the class $\overline{K}(F)$, consequently $\hat{\chi} \in \overline{K}(\hat{D}_{\chi})$, and from this we see that $\hat{\chi} \equiv 0$ on \hat{D}_{χ} . Considering that $\hat{\chi}$ is the symmetric extension

[Vol. 34,

of χ , we see that $\inf \chi = 0$ on D_{χ} . Thus we conclude that $\inf \chi = 0$ on \overline{D} , as χ is continuous on F^* [1]. While $\inf \chi > 0$ on \overline{D} , as \overline{D} is compact. This is absurd. Thus we have shown that $\overline{D} \cap \varDelta(F)$ is not empty.

Next, we define the function \tilde{u} on F, such that

$$\widetilde{u} = u$$
 on G_{λ}
 $= \lambda$ on $F - G_{\lambda}$.
As this function belongs to $BD(F)$, consequently

$$\widetilde{u}=c+\varphi,$$

where c is a constant and $\varphi \in \overline{K}(F)$.

Since $u > \lambda$ on G and takes a constant λ on the relative boundary of G_{λ} , u is subharmonic on F. By considering the process of the orthogonal decomposition, we see that $\tilde{u} < c$ on F, hence $\varphi < 0$ on F. Thus we know that

$$\sup_{F} \widetilde{u} = \sup_{G_{\lambda}} u = c,$$

and the value c is attained by u at the harmonic boundary point of F. While \overline{D} contains the harmonic boundary point of F and $\lambda \le u \le \mu$ on D, and so also on \overline{D} because $u \in BD(F)$. This is absurd. Thus we have verified the theorem.

At the end I wish to express my hearty thanks to Professor A. Kobori and Assistant Professor Y. Kusunoki for their kind guidance during my researches.

References

- I. Gelfand und G. Silov: Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Rec. Math. (Mat. Sbornik), N. S., 9, 25-38 (1941).
- [2] H. L. Royden: Harmonic functions on an open Riemann surface, Trans. Amer. Math. Soc., 73, 40-94 (1952).
- [3] —: On the ideal boundary of a Riemann surface, Ann. Math. Studies, 30, 107-109 (1953).
- [4] A. Mori: On the existence of harmonic functions on a Riemann surface, J. Fac. Sci. Tokyo Univ., 6 (1951).
- [5] S. Mori and M. Ota: A Remark on the ideal boundary of a Riemann surface, Proc. Japan Acad., 32, no. 6 (1956).
- [6] S. Mori: 単連結な hyperbolic type の open Riemann surface の ideal boundary に就いて, 立命館大学理工紀要, no. 2 (1957).