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1. Introduction. In the study of the algebra of all continuous
endomorphisms on a locally convex Hausdorff topological vector space,
the abundance of endomorphisms of finite rank plays an important
role. But, for an arbitrary algebra, there is of course no such a con-
venience in general, and it is interesting to determine an algebra which
can be embedded into the algebra of all continuous endomorphisms on
a locally convex vector space in such a manner that the embedded
algebra contains every continuous endomorphism of finite rank. In
this paper, we deal with this problem.

We shall be exclusively concerned with algebras over the complex
or the real number field.. A topological algebra is by definition an
algebra and topological vector space such that the ring multiplication
is separately continuous. Let E be an algebra; a topology with which
E is a topological algebra is said to be compatible with the structure
of E. As can readily be seen, we obtain the following proposition:

In order that a filter base on an algebra E is a fundamental
system of neighbourhoods of 0 in E for a topology compatible with
the structure of E, it is necessary and sufficient that possesses the
following properties:

1 For any number ,=0, and for any Ve,V belongs to .
2 Every member V of is absorbing, i.e. for any x e E, there

exists a number 20 such that x e V.
3 For any U, there exists V such that V+VU.
4 If x eE, then for any Ue, there exists V such that

xV U and Vx U.
Notice that we may assume to consist of circled sets.)

A topological algebra which is at the same time a locally convex
topological vector space is called a locally convex algebra.

2. Bounded sets. Let E be a topological algebra. A subset A
of E is called left bounded if for any neighbourhood V of 0 in E
there exists a neighbourhood U of 0 in E such that UA V. In an
analogous way, we define right boundedness. A subset of E which

1) We employ the following notations: A--{x; xeA}, aA--{ax; xeA},
AB={xy; xeA, yeB}, A+B=x/y; xA, yB}.

2) A subset A of a vector space is said to be circled if xeA and I I1 imply
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is both left bounded and right bounded is termed hyperbounded. We
say that a subset A of E is bounded whenever it is bounded as a
subset of the topological vector space E, that is, if, for any neigh-
bourhood V of 0 in E there exists a number 0 such that A V.

The proofs of the following propositions are all straightforward:

(1) Every subset of a left (right) bounded set is left (right)
bounded, and so the intersection of an arbitrary non-void family of
left (right) bounded sets is left (right) bounded.

(2) The union of a finite number of left (right) bounded sets
is left (right) bounded.

3 If A is left (right) bounded, then so is A for any number .
(4) If A and B are both left (right) bounded, then AB and

A+B are both left (right) bounded.
(5) The closure of a left (right) bounded set is left (right)

bounded.
(6) If A is left bounded and if B is bounded, then BA is

bounded.
(7) If A is right bounded and if B is bounded, then AB is

bounded.
8 If E is locally convex, then the convex hull of a left (right)

bounded set is left (right) bounded.
9 If E has an identity, then every left (right) bounded set is

bounded.
The property 4 of the fundamental system of neighbourhoods

of 0 shows that every finite set in E is hyperbounded. Therefore,
from (4) it follows that, for any x eE, the sets xA, Ax and x+A are
left (right) bounded if A is left (right) bounded. By (6)and (7), we
see further that if A is bounded, then the sets xA and Ax are both
bounded for any x e E.

Let A and V be two subsets of E. We shall denote by W(A, V)
the set of all elements x eE such that xA V, and by W(A, V) the
set of all elements x E such that Ax V.

THEOREM l. Let E be a topological algebra. If E is a t-space,)

then every bounded set in E is hyperbounded.
Proof. Let A be a bounded set in E. To prove that A is left

bounded, it is sufficient to show that the set W(A, V)is a neighbour-
hood of 0 in E for any closed convex and circled neighbourhood V of
0 in E. Now let x be an arbitrary element of E, then there exists
a number 0 such that xAV, as we have pointed out above.
Hence the set Wt(A, V) is absorbing. Suppose that x does not belong
to Wt(A, V), then we can find an element a of A such that xa -V, and

3) In French "espace tonneld". Cf. N. Bourbaki: Espaces Vectoriels Topologi-
ques, Chaps. III-V, Hermann, Paris (1955).
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so we have (xa+U)V= for some neighbourhood U of 0 in E.
Take a neighbourhood W of 0 in E for which we have Wa U. Then,
for any y e W, the set (x+y)A is not contained in V, since (x+ W)a
and V do not meet. In other words, x+y does not belong to Wt(A, U),
proving that W(A, V) is closed in E. Since Wt(A, V) is convex and
circled, this is neighbourhood of 0 in E. Similarly, we can prove
that the set W(A, V) is a neighbourhood of 0 in E for each neigh-
bourhood V of 0 in E.

A topological algebra E is sid to be normable if the topology
of E can be defined by means of a norm with which E is a normed
algebra.

THEOREM 2. Let E be a locally convex Hausdorff topological
algebra. Then E is normable if and only if there exists a neighbour-
hood of 0 in E which is left (or right) bounded and bounded.

Proof. The only if part is obvious. Let U be the convex circled
neighbourhood of 0 which is left bounded and bounded. Then, there
exists a neighbourhood V of 0 such that VU U. Since U is bounded,
we have UV for some number i : 0, and so UU U.

Let S be a set, E a topological algebra, and (R) a family of sub-
sets of S. The set (S, E) consisting of 11 mappings of S into E
forms an algebra with pointwise definition of the algebraic operations.

THEOREM 3. With the notion given above, if H is a subalgebra

of (S, E), then in order that the topology of uniform convergence
on members of (R) is compatible with the structure of H, it is sufficient
that, for any u H, the image of each member of (R) under u is hyper-
bounded and bounded.

Proof. It will suffice to show that the ring multiplication in H
is separately continuous. Let u be an element of H, and A an arbitrary
member of (R). Since u(A) is hyperbounded, we can find, for each
neighbourhood V of 0 in E, a neighbourhood U of 0 in E such that
u(A)UV and Uu(A) V. But then, we have u W(A, U) W(A, V)
and W(A, U)u W(A, V), where W(A, U) denotes the set of all veil

such that v(x) e U for any x e A.
Let E be a topological algebra. Let us denote by (}) the family

of all left (right) bounded sets in E, and by 1(3) a subfamily of (9)
such that xA e I(Ax ) for any A e ( e 3) and any x e E. Then, the
family 3 of all sets of the form Wt(A, V), where A eI and V runs
through the fundamental system of neighbourhoods of 0 in E, is -fundamental system of neighbourhoods of 0 for a topology compatible
with the structure of E. In fact, the family satisfies the conditions
1-4. For example, 2 follows from the fact that xA is bounded
for any Ae, and 4 is apparent since we have, for any W(A, U)e ,

W,(xA, U)x Wt(A, U) and x W(A, V) Wt(A, U),
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by taking a neighbourhood V of 0 in E such that xV U. We shall
call this topology the left ?i-topology. In an analogous way, we define
the right -topology. Obviously, these topologies are coarser than the
original one of E. But if E has an identity and if it belongs to a
member of ;[(), then the left -topology (right -topology) is identical
with the original topology of E. If the algebra is locally convex, then
the family I as well as can be always supposed to consist of closed,
convex and circled sets, and to be such that the closed convex hull
of the union of any finite number of the members of I belongs to
2, and that of to .

THEOREM 4. With the notion given above, every left bounded set
in E is left bounded for any right -topology; if 25’ is a subfamily
of such that BA for any A ’ and any B 25, then every member
of ’ is right bounded for the right -topology.

Notice that, similar results hold for the left ?i-topology.
Proof. Let A be a left bounded set in E. Then, for any neigh-

bourhood U of 0 in E, there exists a neighbourhood V of 0 in E such
that VA U. Hence, for each B e, the set W(B, V)A is contained
in W(B, U), proving the first assertion. If A e’, then we have
AW(BA, U)_ W(B, U) for any neighbourhood U of 0 in E, and any
Be. Since BAe, A is right bounded for the right -topology.

Denote by E the algebra E with the right -topology. Since
every A e is also left bounded in E, we can consider in E the left
l-topology, which we shall call the (I, )-topology.. The representatior theorems. Let X be a topological vector
space. We denote by f(X, X) the set of all continuous linear map-
pings of X into itself. This is itself not only a vector space, but also
an algebra by defining the ring multiplication of two elements u, v
of A?(X, X) as follows: uv(x)-u(v(x)) for each x X. A linear mapping
of X into itself is said to be of finite rank if its range is a finite
dimensional vector subspace of X.

Let E be an algebra satisfying the following two conditions:
(i) There exists a non-zero element a eE such that, for any

ueE we can find a number for which we have aua=a.
(ii) For any non-zero elements u, v of E, there exists an element

w e E such that uwv O.
Then, it is not hard to prove that

(i’) There exists a non-zero idempotent p eE such that, for any
element u E, we can find a number for which we have pup--p.
In fact, the conditions (i)and (ii) ensure the existence of an element
v eE such that ava--a. Then p-av as well as p=va possesses the
required property, as is easily checked.

For any x--upeEp and any y--pvepE, there exists a unique
number such that yx=pvup--p; we put then (x, y}--. It is easy
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to see that the mapping (x, y)--(x, y} is a bilinear functional over
EppE. Now, with respect to the bilinear functional (x, y}, the
vector spaces Ep and pE constitute a separated dual system, that is,
by definition the following conditions are satisfied:

a ) For any non-zero x e Ep, there exists y e pE such that (x, y}
4=0;

( b For any non-zero y e pE, there exists x Ep such that (x, y}
4=0.
For, if x--up=O, then we can find an element wee such that pwup
0; and if y-pv=O, then we have also pvwpO for some we E.

Let us denote by X the vector space Ep with the weak topology
a(Ep, pE),’ then X is a locally convex Hausdorff vector space whose
dual is pE. Let u eE; and put (x)-ux for every x eX. It is clear
that is a linear mapping of X into itself. On the other hand, since
yu pE for any y pE, the mapping is weakly continuous, and thus
g belongs to f(X, X). As can readily be seen, the mapping u--> of

the algebra E onto the subalgebra E--{; u eE} of L’(X, X) is a
homomorphism. But this is indeed an isomorphism, since, for any
distinct elements u, v of E, there exists an element we E such that
(u--v)wp O. Now, let up e X and let pv e pE, then for each x--wp e X,
we have

(x, pvup--(wp, pv}up--u(wp, pv}p--upvwp--pv(x).
This proves that E contains every mapping of the form x--> (x, pvup,
and so every continuous linear mapping of finite rank. We have thus
obtained the following

THEOREM 5. If E is an algebra satisfying the conditions ( i) and
(ii), then there exists a locally convex Hausdorff vector space X such
that E is isomorphic (algebraically) with a subalgebra of (X, X)
containing all continuous linear mappings of finite rank.

The following theorem is now evident.
THEOREM 6. If E is an algebra satisfying the condition (i’), then

there exists a locally convex vector space X such that E is homomorphic
(algebraically) with a subalgebra of .E(X, X) containing all continuous
linear mappings of finite rank.

In the above consideration, let us suppose further that E is a
Hausdorff topological algebra. Then there exists a neighbourhood U
of 0 in Esuch that pU when and only when I11. Let y,y.,.., y be a finite set of points of pE, then we can find a neighbour-
hood V of 0 in E for which we have yVU (i--1, 2,..., m). Hence

(Y, U,’" ", U)-{x e X; (x, U} Il for i-- 1, 2,..., m}
{x e Ep; yx e U for i- 1, 2,..., m} VEp.

It follows that, if x, x.,..., x. e X, then the image of the set W({x,
x.,..., x}, V) under the mapping u--> is contained in the set W({x, x,
"., Xn}, (Y, Y.,’’’, y)O).) Since the set W({x, x,..., x}, V) is a neigh-

4) For this notation, see N. Bourbaki" Loc. cit.
5) Let A and V be two subsets of a topological vector space X. Then we denote

by W(A, V) the set of all u e ._f(X, X) such that u(A)_ V.
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bourhood of 0 in E, the mapping u- of E into A?(X, X) is continuous,
where L(X, X) is the algebra J2(X, X) with the topology of point-
wise convergence. Therefore, we can state as follows:

THEOREM 7. Let E be a Hausdorff topological algebra satisfying
the conditions (i) and (ii), then there exists a locally convex Hausdorff
vector space X such that E is mapped, by a continuous isomorphism,
onto a subalgebra of (X, X) containing all continuous linear map-
pings of finite rank.

Moreover, suppose that the algebra E is locally convex and satis-
fies the following conditions:

(iii) Every right bounded set in pE is relatively compact for the
left {{x}; x Ep}-topology.

(iv) Let () be the family of all left (right) bounded sets
contained in Ep(pE), then the (i,)-topology is identical with the
original topology of E.

Under these assumptions, we will show that the isomorphism u-
can be a homeomorphism. Let us denote again by X the vector space
Ep with the right -topology. Since Bue 25 for any B e and any

u e E, we see that is contained in the algebra L’(X, X). On the
other hand, since E is a Hausdorff space, we can find a neighbourhood
Uof 0 in E such that peUwhen and only when ]!1. We have
then, for each B ,

B--{xX; i(x, y}ll for every yB}-- W(B, U)Ep,
and hence, by the condition (iii), the dual space of X is pE. This

ensures that the algebra E contains all continuous linear mappings of
finite rank. Now let Ae?I, Be3 and let V be a neighbourhood of 0
in E. Then the image of the set W(A, Wr(B, V)) under the mapping

u-> is W(A, W(B, V)Ep)E. Therefore, the isomorphism u- is

a homeomorphism of E onto the subalgebra E of L’(X, X), where
A’u(X, X) is the algebra f(X, X) with the topology of uniform con-
vergence on the members of ?I. To prove that this topology is com-
patible with the structure of A?(X, X), it will suffice to show that
each member A of ?1 is bounded in X. For any u eE, the set uB is
bounded in E, and so A is bounded for the weak topology a(X, pE).
Therefore A is bounded in X. We can conclude thus as follows:

THEOREM 8. Let E be a locally convex Hausdorff topological al-
gebra satisfying the conditions (i), (ii), (iii) and (iv). Then there
exists a locally convex Hausdorff vector space X such that E can be
identified with a subalgebra of(X,X) containing all continuous linear
mappings of finite rank, where (R) is a family of bounded sets in X.

Let E be a Hausdorff topological commutative algebra. If E
satisfies the conditions (i) and (ii), then E is isomorphic (algebraically
and topologically) with the scalar field. In fact, the vector spaces Ep
and pE are both of dimension 1, and hence the dimension of E is
also 1. Therefore E is isomorphic with the scalar field.


