81. Relations between Solutions of Parabolic and Elliptic Differential Equations

By Haruo Murakami
Kobe University
(Comm. by K. Kunugi, m.J.A., June 12, 1958)

In this note we shall show that under some conditions the solution $u(x, t)$ of

$$
\sum_{i=1}^{m} \frac{\partial^{2} u}{\partial x_{i}^{2}}-\frac{\partial u}{\partial t}=f(x, t, u)
$$

converges to a solution $v(x)$ of

$$
\sum_{i=1}^{m} \frac{\partial^{2} v}{\partial x_{i}^{2}}=\bar{f}(x, v)
$$

as $t \rightarrow \infty$.
Let G be a domain which is regular for Laplace's equation ${ }^{1)}$ in the m-dimensional Euclidean space, and let Γ be the boundary of G. Set $D=G \times(0, \infty)$ and $B=\Gamma \times[0, \infty)$. We remark that D is regular for the heat equation ${ }^{2)}$ and therefore regular for the equation $\left(\mathrm{E}_{1}\right)$ below. ${ }^{\text {8) }}$

Now, let ∇ and \triangle be the generalized heat operator ${ }^{4)}$ and the generalized Laplacian operator respectively, i. e.

$$
\begin{gathered}
\nabla u(x, t)=\lim _{r \downarrow 0} \frac{(n+2)^{\frac{m}{2}+1}}{m \pi^{\frac{m}{2}} r^{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\{u(\xi, \tau)-u(x, t)\} \sin ^{m-1} \theta \\
\times \cos \theta(\log \operatorname{cosec} \theta)^{\frac{m}{2}} J d \varphi_{1} \cdots d \varphi_{m-1} d \theta
\end{gathered}
$$

and

$$
\Delta u(x)=\lim _{r \downarrow 0} \frac{2 \cdot \Gamma\left(\frac{m}{2}+1\right)}{\pi^{\frac{m}{2}} r^{2}} \int_{0}^{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\{u(\xi)-u(x)\} \boldsymbol{J} d \varphi_{1} \cdots d \varphi_{m-1},
$$

where in the first expression, $(\xi, \tau)=\left(\xi_{1}, \cdots, \xi_{m}, \tau\right)$ with

$$
\xi_{i}=x_{i}+2 r \sqrt{m} \sin \theta \sqrt{\log \operatorname{cosec} \theta} \eta_{i} \quad(i=1, \cdots, m)
$$

1) This means that the 1st boundary value problem of Laplace's equation for G is always solvable for any continuous data on Γ.
2) "Regular for the heat equation" means that the 1st boundary value problem of the heat equation for D is always solvable for any continuous data on $G \checkmark B$. D is regular for the heat equation if and only if G is regular for Laplace's equation. For the proof, see "On the regularity of domains for parabolic equations", Proc. Japan Acad., 34, 347-348 (1958).
3) It was proved in [1, p.626] that a p-domain is regular for $\left(\mathrm{E}_{1}\right)$ if and only if it is regular for the heat equation.
4) See [1, p. 627], in which we used the symbolinstead of ∇.

$$
\tau=t-r^{2} \sin ^{2} \theta \quad\left(0 \leq \theta \leq \frac{\pi}{2}\right)
$$

and in the second expression, $(\xi)=\left[\xi_{1}, \cdots, \xi_{m}\right)$ with

$$
\xi_{i}=x_{i}+r \eta_{i} \quad(i=1, \cdots, m) .
$$

In both cases,

$$
\begin{aligned}
& \eta_{1}=\cos \varphi_{1} \cos \varphi_{2} \cdots \cdots \cdots \cdots \cos \varphi_{m-2} \cos \varphi_{m-1} \\
& \eta_{2}=\cos \varphi_{1} \cos \varphi_{2} \cdots \cdots \cdots \cos \varphi_{m-2} \sin \varphi_{m-1} \\
& \eta_{3}=\cos \varphi_{1} \cos \varphi_{2} \cdots \cdots \cdots \sin \varphi_{m-2} \\
& \quad \cdot \cdots \cdots \cdot \cdots \cdot \cdots \cdot \\
& \eta_{m-1}=\cos \varphi_{1} \sin \varphi_{2} \\
& \eta_{m}=\sin \varphi_{1} \quad\left(-\frac{\pi}{2} \leqq \varphi_{i} \leqq \frac{\pi}{2}, i=1, \cdots, m-2 ; 0 \leqq \varphi_{m-1} \leqq 2 \pi\right)
\end{aligned}
$$

and

$$
\boldsymbol{J}=\operatorname{det}\left|\begin{array}{cccc}
\eta_{1} & \eta_{2} & \cdots \cdots & \eta_{m} \\
\frac{\partial \eta_{1}}{\partial \varphi_{1}} & \frac{\partial \eta_{2}}{\partial \varphi_{1}} & \cdots \cdots & \frac{\partial \eta_{m}}{\partial \varphi_{1}} \\
\cdot & \cdots \cdot & \cdots & \cdots \\
\frac{\partial \eta_{1}}{\partial \varphi_{m-1}} & \frac{\partial \eta_{2}}{\partial \varphi_{m-1}} & \cdots \cdots & \frac{\partial \eta_{m}}{\partial \varphi_{m-1}}
\end{array}\right| \cdot
$$

These operators have the following properties:
(i) If $u(x, t)$ and $u(x)$ are functions in the class C^{2},

$$
\nabla u(x, t)=\sum_{i=1}^{m} \frac{\partial^{2} u(x, t)}{\partial x_{i}^{2}}-\frac{\partial u(x, t)}{\partial t}
$$

and

$$
\triangle u(x)=\sum_{i=1}^{m} \frac{\partial^{2} u(x)}{\partial x_{i}^{2}} .
$$

(ii) If we operate ∇ to a function $u(x)$ which does not depend on t, we have

$$
\nabla u(x)=\triangle u(x) .
$$

Consider the following two equations:
(E_{1})

$$
\nabla u=f(x, t, u)
$$

$$
x \in G, t \geq 0,
$$

(E_{2})

$$
\triangle v=\bar{f}(x, v)
$$ $x \in G$,

where $f(x, t, u)$ and $\bar{f}(x, v)$ are continuous functions on $D \times(-\infty, \infty)$ and $G \times(-\infty, \infty)$ respectively, quasi-bounded ${ }^{5)}$ with respect to u and v and non-decreasing with respect to u and v.

Let $g(x)$ be a continuous function on $G \cup \Gamma$ and $\varphi(\bar{x}, t)$ be a continuous function on B and moreover $\varphi(\bar{x}, 0)=g(\bar{x})$ for $\bar{x} \in \Gamma$. Let $u(x, t)$ be a solution ${ }^{6)}$ of (E_{1}) which is continuous on $D \smile G \smile B$ and which satisfies the boundary condition $u(x, 0)=g(x)(x \in G)$ and $u(\bar{x}, t)=\varphi(\bar{x}, t)$ $(x \in \Gamma, t \geq 0)$. Assume that $\varphi(\bar{x}, t)$ converges uniformly on Γ^{\prime} to a
5) We say that a function $f(p, q)$ defined on $E \times F$ is quasi-bounded with respect to q if $f(p, q)$ is bounded on $E \times K$, where K is any compact set in F.
6) 7) These solutions $u(x, t)$ and $v(x)$ do exist. See [1] and [2].
function $\varphi(\bar{x})$ as $t \rightarrow \infty$. (Then $\varphi(\bar{x})$ is again a continuous function on Γ.) Let $v(x)$ be a solution ${ }^{7)}$ of (E_{2}) which is continuous on $G \smile \Gamma$ and satisfies $v(\bar{x})=\varphi(\bar{x})$ on Γ.

Finally assume that, for any $U>0, f(x, t, u)$ converges uniformly to $\bar{f}(x, u)$ on the set $\{(x, u) ; x \in G,|u| \leq U\}$ as $t \rightarrow \infty$. ${ }^{8)}$

Under these assumptions, $u(x, t)$ converges uniformly to $v(x)$ on $G \smile \Gamma$ as $t \rightarrow \infty$.

Proof. For any $\varepsilon>0$, there exists $T_{1}>0$ such that $|\varphi(\bar{x}, t)-\varphi(\bar{x})|$ $<\varepsilon$ for $t \geq T_{1}$. Set $M_{0}=\max \{|g(x)| ; x \in G \smile \Gamma\}, M_{1}=\max \{|\varphi(\bar{x}, t)| ;$ $\left.x \in \Gamma, 0 \leq t \leq T_{1}\right\}$ and $M_{2}=\max \{|v(x)| ; x \in G \smile \Gamma\}$. By the assumption above we can find a constant $T_{2}>0$ such that

$$
|f(x, t, v(x))-\bar{f}(x, v(x))|<\varepsilon
$$

for $x \in G, t \geq T_{2}$. Set $M_{3}=\sup \left\{|f(x, t, v(x))-\bar{f}(x, v(x))| ; x \in G, 0 \leq t \leq T_{2}\right\}$. Let $\psi(x)$ be a solution of $\triangle \psi=-1$ such that $\psi(x)$ is continuous on $G \cup \Gamma$ and vanishes on Γ. Then there exists a constant ψ such that $0 \leq \psi(x) \leq \Psi$, hence we can take a constant $\alpha>0$ such that $-1+\alpha(1+\Psi)$ $<-\frac{1}{2}$. Finally, let $M>0$ be a constant such that (i) $\frac{1}{2} M e^{-\alpha T_{2}}>M_{3}$, (ii) $M e^{-\alpha T_{1}}>M_{1}+M_{2}$ and (iii) $M>M_{0}+M_{2}$.

Consider the function $M e^{-\alpha t}+\varepsilon$. Then, we have

$$
|\varphi(\bar{x}, t)-\varphi(\bar{x})|<M e^{-\alpha t}+\varepsilon \quad x \in \Gamma, t \geq 0 .
$$

Now, let $v_{1}(x, t)$ be a solution of the equation:

$$
\sum_{i=1}^{m} \frac{\partial^{2} v}{\partial x_{i}^{2}}=-M e^{-a t}-\varepsilon,
$$

and suppose that $v_{1}(x, t)$ is continuous on $G \smile \Gamma$ and admits the boundary value $M e^{-\alpha t}+\varepsilon$ on Γ. Then we have

$$
\begin{aligned}
v_{1}(x, t) & =M e^{-\alpha t}+\varepsilon+\psi(x)\left(M e^{-\alpha t}+\varepsilon\right) \\
& =M e^{-\alpha t}(1+\psi(x))+\varepsilon(1+\psi(x)) \\
& =\left(M e^{-\alpha t}+\varepsilon\right)(1+\psi(x)) .
\end{aligned}
$$

Set $V(x, t)=v(x)+v_{1}(x, t)$, then

$$
\begin{aligned}
\nabla V(x, t) & =\triangle v(x)+\sum_{i=1}^{m} \frac{\partial^{2} v_{1}(x, t)}{\partial x_{i}^{2}}-\frac{\partial v_{1}(x, t)}{\partial t} \\
& =\bar{f}(x, v(x))+\left(-M e^{-\alpha t}-\varepsilon\right)+\alpha M e^{-\alpha t}(1+\psi(x)) \\
& =\bar{f}(x, v(x))+\varepsilon+M e^{-\alpha t}(-1+\alpha(1+\psi(x))) .
\end{aligned}
$$

Now, for $u>V(x, t)$ we have
$f(x, t, u)-\nabla V(x, t) \geq f(x, t, v(x))-\bar{f}(x, v(x))+\varepsilon-M e^{-\alpha t}(-1+\alpha(1+\psi(x)))$.
Since $f(x, t, v(x))-\bar{f}(x, v(x))>-M_{3}$ and $-M e^{-\alpha t}(-1+\alpha(1+\psi(x)))>M_{3}$ for $0 \leq t \leq T_{2}$, we have

$$
f(x, t, u)-\nabla V(x, t)>0
$$

for $0 \leq t \leq T_{2}$. For $t \geq T_{2}$, since $f(x, t, v(x))-\bar{f}(x, v(x))>-\varepsilon$, we have
8) It is sufficient for our proof to assume that $f(x, t, v(x))$ converges uniformly to $\bar{f}(x, v(x))$ on G as $t \rightarrow \infty$.

$$
f(x, t, u)-\nabla V(x, t)>0
$$

Consequently, if $u>V(x, t), x \in G$ and $t>0$, then we obtain

$$
f(x, t, u)-\nabla V(x, t)>0
$$

Next, on the boundary B, since $\varphi(\bar{x}, t) \leq \varphi(\bar{x})+M e^{-\alpha t}+\varepsilon$, we have

$$
u(\bar{x}, t)=\varphi(\bar{x}, t) \leq \varphi(\bar{x})+\left(M e^{-\alpha t}+\varepsilon\right)(1+\psi(\bar{x}))=V(\bar{x}, t)
$$

On G, the rest part of the boundary of D,

$$
u(x, 0)=g(x) \leq M_{0}<M-M_{2} \leq v(x)+(1+\psi(x))(M+\varepsilon)
$$

implies $V(x, 0) \geq u(x, 0)$. Hence, on the whole boundary of D, we have

$$
V(x, t) \geq u(x, t)
$$

Therefore by the comparison theorem, ${ }^{9)}$ we have

$$
u(x, t) \leq V(x, t)=v(x)+v_{1}(x, t)
$$

on $D \smile G \smile B$. Similarly we have $v(x)-v_{1}(x, t) \leq u(x, t)$, and consequently

$$
|u(x, t)-v(x)| \leq v_{1}(x, t)
$$

on $D \smile G \smile B$.
Since $v_{1}(x, t)=\left(M e^{-\alpha t}+\varepsilon\right)(1+\psi(x))$, there exists a constant $T_{3}>0$ such that $\left|v_{1}(x, t)\right| \leq 2(1+\Psi) \varepsilon$ for $x \in G \smile \Gamma$ and $t \geq T_{3}$. Thus $u(x, t)$ converges uniformly to $v(x)$ on $G \smile \Gamma$. This completes the proof.

Corollary 1. Assume that moreover $f(x, t, 0) \equiv 0$. Then, the solution of (E_{1}) which admits $g(x)$ on G (where $g(\bar{x})=0$ for $\bar{x} \in \Gamma$) and which vanishes on B converges uniformly to zero on $G \smile \Gamma$.

This shows that the solution is asymptotically stable.
Corollary 2. If $\varphi(\bar{x}, t)$ converges uniformly to $\varphi(\bar{x})$ on Γ, the solution of the heat equation which admits $\varphi(\bar{x}, t)$ on B and which admits $g(x)$ on G converges uniformly to the solution of Laplace's equation which admits $\varphi(\bar{x})$ on Γ.

This means that the solution of the heat equation converges to the steady state solution. ${ }^{10)}$

References

[1] H. Murakami: On non-linear partial differential equations of parabolic types. I-III, Proc. Japan Acad., 33, 530-535, 616-627 (1957).
[2] T. Satō: Sur l'équation aux dérivées partielles $\Delta z=f(x, y, z, p, q)$, Comp. Math., 12 (1954) and Sur l'équation aux dérivées partielles $\Delta z=f(x, y, z, p, q)$ II (to appear). Also M. Hukuhara and T. Satō: Theory of Differential Equations (in Japanese), Kyōritsu Publ. Co., Ltd., Tokyo (1957).

[^0]
[^0]: 9) Theorem 2.1 [1, p. 533].
 10) See also W. Fulks: A note on the steady state solution of the heat equation, Proc. Amer. Math. Soc., 7 (1956). He assumed that $\varphi(\bar{x}, t)$ is monotone increasing with t. This assumption plays essential role in his proof but our proof does not need it.
