80. On the Regularity of Domains for Parabolic Equations

By Haruo Murakami
Kobe University
(Comm. by K. Kunugi, m.J.A., June 12, 1958)

Let G be a domain with the boundary Γ in the m-dimensional Euclidean space R^{m}. Let $D=G \times(0, \infty)$ and $B=\Gamma \times[0, \infty)$. W. Fulks pointed out in [1] by constructing barriers at every boundary point of G that if D is regular for the heat equation then G is regular for Laplace's equation. In this note we shall show also by constructing barriers of the parabolic equation at every point of $G \cup B$ that the converse of the result above by W. Fulks is true.

Consider the equation
(E)

$$
\nabla u=f(x, t, u)^{1)}
$$

where $f(x, t, u)$ is continuous on $D \times(0, \infty)$ and quasi-bounded with respect to u.

As in [2, p. 623], we say that $w(x, t)$ is a barrier of (E$)$ at a boundary point $\left(x^{0}, t^{0}\right) \in G \smile B$ with respect to a bounded function $\beta(x, t)$ defined on $G \smile B$ if $w(x, t)$ satisfies:
(i) $w(x, t)$ is continuous on \bar{D},
(ii) $\quad w(x, t)>0 \quad(x, t) \in \bar{D}, \quad(x, t) \neq\left(x^{0}, t^{0}\right)$,
(iii) $w(x, t) \rightarrow 0 \quad(x, t) \rightarrow\left(x^{0}, t^{0}\right), \quad(x, t) \in \bar{D}$,
(iv) $\sigma w(x, t) \leqq-M$, where

$$
M=\sup \left\{\left|f\left(x, t, \bar{\beta}\left(x^{0}, t^{0}\right)\right)\right|,\left|f\left(x, t, \underline{\beta}\left(x^{0}, t^{0}\right)\right)\right| ;(x, t) \in \bar{D}\right\} .
$$

It is known ${ }^{2)}$ that if every point of $G \smile B$ has barriers then D is regular for (E), i.e. the first boundary value problem of (E) is always solvable for any continuous data on $G \smile B$.

Now we shall construct the barrier $w(x, t)$ satisfying the conditions (i), (ii), (iii) and (iv) under the assumption that G is regular for Laplace's equation.

In case that $\left(x^{0}, t^{0}\right) \in G$, it is easy to see that the function $w(x, t)$ $=\sum_{i=1}^{m}\left(x_{i}-x_{i}^{0}\right)^{2}+(2 m+M)\left(t-t^{0}\right)$ is a barrier at $\left(x^{0}, t^{0}\right)$. In case that $\left(x^{0}, t^{0}\right) \in B$ with $t^{0}>0$, let $\varphi(x, t)=\sum_{i=1}^{m}\left(x_{i}-x_{i}^{0}\right)^{2}+\left(t-t^{0}\right)^{2}$. Then we have $\varphi(x, t) \geqq 0$ and

$$
\begin{aligned}
\nabla \varphi(x, t) & =\sum_{i=1}^{m} \frac{\partial^{2} \varphi(x, t)}{\partial x_{i}^{2}}-\frac{\partial \varphi(x, t)}{\partial t} \\
& =2\left(m-\left(t-t^{0}\right)\right) .
\end{aligned}
$$

[^0]For a boundary vanishing solution $\psi(x)$ of $\Delta \psi=-2\left(m+t^{0}\right)-M$ on $G \smile \Gamma$, the function $w(x, t)=\psi(x)+\varphi(x, t)$ has the following properties:
(i) $w(x, t)$ is continuous on \bar{D},
(ii) $\quad w(x, t)>0 \quad(x, t) \in \bar{D}, \quad(x, t) \neq\left(x^{0}, t^{0}\right)$,
(iii) $w(x, t) \rightarrow 0 \quad(x, t) \rightarrow\left(x^{0}, t^{0}\right), \quad(x, t) \in \bar{D}$,
(iv) $\nabla w(x, t)=\nabla\{\psi(x)+\varphi(x, t)\}$

$$
=\Delta \psi(x)+\nabla \varphi(x, t)
$$

$$
=-2\left(m+t^{0}\right)-M+2\left\{m-\left(t-t^{0}\right)\right\}
$$

$$
=-M-2 t
$$

$$
\leqq-M
$$

Thus, $w(x, t)$ is a barrier of (E) at $\left(x^{0}, t^{0}\right)$. This completes the proof.

References

[1] W. Fulks: A note on the steady state solution of the heat equation, Proc. Amer. Math. Soc., 7 (1956).
[2] H. Murakami: On non-linear partial differential equations of parabolic types. I-III, Proc. Japan Acad., 33, 530-535, 616-627 (1957).
[3] H. Murakami : Relations between solutions of parabolic and elliptic differential equations, Proc. Japan Acad., 34, 349-352 (1958).

[^0]: 1) σ and \triangle below are respectively the generalized heat and Laplacian operators. For the definitions, see [2, p. 627], where σ is denoted by \square. See also [3, p. 349].
 2) $[2, \mathrm{pp} .624-626]$.
