76. On Tangent Bundles of Order 2 and Affine Connections

By Tominosuke ŌTSUKI
Department of Mathematics, Okayama University, Japan
(Comm. by Z. Suetuna, m.J.A., June 12, 1958)

In this paper, the author will show that the classical connections, for instance, the affine, projective, conformal connections, can be considered from a unificative standpoint by means of the concept of tangent bundles of order 2, although they can be also discussed through the theory of connections of vector bundles. ${ }^{11}$ We shall investigate the relations between this theory and the ones of C. Ehresmann and S. S. Chern ${ }^{2)}$ in Mathematical Journal of Okayama University, 8.

1. The group \mathfrak{R}_{n}^{2}. According to C. Ehresmann, ${ }^{3)}$ let L_{n}^{3} be the group of the infinitesimal isotropies of order 2 at the origin of R^{n}, whose any element is written as a set of numbers ($a_{i}^{j}, a_{i k}^{j}$) such that $\left|a_{i}^{j}\right| \neq 0, a_{i k}^{j}=a_{k i}^{j}$. We can easily see that the set \mathfrak{R}_{n}^{3} of ($a_{i}^{j}, a_{i k}^{j}$) such that only $\left|a_{i}^{j}\right| \neq 0$, also forms a group containing L_{n}^{2} as a subgroup with the multiplication as follows:

For any two $\alpha, \beta \in \mathfrak{R}_{n}^{2}, \gamma=\alpha \beta$ is defined by
$a_{i}^{j}(\gamma)=\alpha_{k}^{j}(\alpha) a_{i}^{k}(\beta)$,
$a_{i k}^{j}(\gamma)=a_{h}^{j}(\alpha) a_{i k}^{h}(\beta)+a_{h l}^{j}(\alpha) a_{i}^{h}(\beta) a_{k}^{l}(\beta)$.
By (1.1), we have a natural homomorphism $\sigma: \mathfrak{Z}_{n}^{3} \rightarrow L_{n}^{1}=G L(n, R)$ such that

$$
\begin{equation*}
a_{i}^{j}(\sigma(\alpha))=a_{i}^{j}(\alpha) . \tag{1.3}
\end{equation*}
$$

As is well known, we may consider L_{n}^{1} as a subgroup of L_{n}^{2}, regarding the second coordinates $a_{i k}^{j}$ of their elements as zero. Let \Re_{n}^{2} be the kernel of σ. By means of (1.2), for any $\alpha, \beta \in \mathfrak{N}_{n}^{2}$, we have

$$
a_{i k}^{j}(\alpha \beta)=a_{i k}^{j}(\alpha)+\alpha_{i k}^{j}(\beta),
$$

hence \Re_{n}^{3} is a vector space of dimension n^{3}. We define a mapping $\eta: \mathfrak{R}_{n}^{2} \rightarrow \mathfrak{R}_{n}^{2}$ by

$$
\begin{equation*}
\eta(\alpha)=\sigma\left(\alpha^{-1}\right) \alpha . \tag{1.4}
\end{equation*}
$$

Then, we can write uniquely any element α of \mathfrak{R}_{n}^{2} as a product of $\sigma(\alpha) \in L_{n}^{1}$ and $\eta(\alpha) \in \Re_{n}^{2}$

[^0]\[

$$
\begin{equation*}
\alpha=\sigma(\alpha) \eta(\alpha) \tag{1.5}
\end{equation*}
$$

\]

We get easily from the above formulas the following lemmas.
Lemma 1. For any $\alpha \in \mathfrak{R}_{n}^{2}, \beta \in \mathfrak{R}_{n}^{2}$, we have

$$
\begin{equation*}
a_{i k}^{3}\left(\alpha^{-1} \beta \alpha\right)=a_{m}^{j}\left(\alpha^{-1}\right) a_{n k}^{m}(\beta) a_{i}^{h}(\alpha) a_{k}^{2}(\alpha) . \tag{1.6}
\end{equation*}
$$

Lemma 2. For any $\alpha, \alpha_{1} \in \mathfrak{\sum}_{n}^{2}$, we have

$$
\begin{gather*}
a_{i k}^{j}(\eta(\alpha))=a_{h}^{j}\left(\alpha^{-1}\right) a_{i k}^{h}(\alpha), \tag{1.7}\\
a_{i k}^{j}\left(\eta\left(\alpha \alpha_{1}\right)\right)=a_{i k}^{j}\left(\alpha_{1}^{-1} \eta(\alpha) \alpha_{1}\right)+a_{i k}^{j}\left(\eta\left(\alpha_{1}\right)\right) . \tag{1.8}
\end{gather*}
$$

2. The tangent space and associated principal bundle of order 2. For any differentiable manifold \mathfrak{X} of dimension n, we shall define the tangent space $\mathfrak{I}^{2}(\mathfrak{X})$ of order 2 which will contain the tangent space $T(\mathfrak{X})$ in the ordinary sense. Let $\left(u^{i}\right), i=1, \cdots, n$, be a system of local coordinates of \mathfrak{X} defined on an open neighborhood U. With the coordinate neighborhood (U, u^{i}), we associate $n+n^{2}$ fields of vectors $X_{i}, X_{i k}$ defined on U. Let $Y_{i}, Y_{i k}$ be the vector fields associated with another coordinate neighborhood $\left(V, v^{i}\right)$. If $U \frown V \neq 0$, we assume that they are related mutually as

$$
\begin{gather*}
X_{i}=\frac{\partial v^{j}}{\partial u^{i}} Y_{j}, \tag{2.1}\\
X_{i k}=\frac{\partial^{2} v^{j}}{\partial u^{k} \partial u^{i}} Y_{j}+\frac{\partial v^{j}}{\partial u^{i}} \frac{\partial v^{h}}{\partial u^{k}} Y_{j n} . \tag{2.2}
\end{gather*}
$$

These formulas easily show that, at any point x of \mathfrak{X}, these vectors define a vector space of dimension $n+n^{2}$ independent of local coordinates. We call it the tangent space of order 2 of \mathfrak{X} at the point x and denote it by $\mathfrak{I}_{x}^{2}(\mathfrak{X})$. This is, in fact, wider than the one $T_{x}^{2}(\mathfrak{X})^{4)}$ of C. Ehresmann which may be obtained by putting $X_{i k}=X_{k i}$. The union

$$
\mathfrak{I}^{2}(\mathfrak{X})=\bigcup_{x \in \mathfrak{X}} \mathfrak{V}_{x}^{2}(\mathfrak{X})
$$

may be considered naturally as the total space of a vector bundle $\left\{\mathfrak{Z}^{2}(\mathfrak{X}), \mathfrak{X}, \bar{\tau}\right\}$ with the natural projection $\bar{\tau}$, whose structure group is \mathfrak{R}_{n}^{2}. For brevity, we denote also the vector bundle by the same notation $\mathfrak{T}^{2}(\mathfrak{X})$.

Let $\left\{\mathfrak{B}^{2}(\mathfrak{X}), \mathfrak{X}, \bar{\pi}\right\}$ be the associated principal bundle of $\mathfrak{I}^{2}(\mathfrak{X})$. Any point \bar{b} of $\mathfrak{B}^{2}(\mathfrak{X})$ may be regarded as a frame of $\mathbb{I}^{2}(\mathfrak{X})$ at the point $\bar{\pi}(\bar{b})$ such that

$$
\begin{gathered}
\mathrm{e}_{i}(\bar{b})=X_{i} a_{i}^{j}(\bar{\alpha}), \\
\mathrm{e}_{i k}(\bar{b})=X_{h} a_{i k}^{h}(\bar{\alpha})+X_{j h} a_{i}^{j}(\bar{\alpha}) a_{k}^{h}(\bar{\alpha}),
\end{gathered}
$$

where $\bar{\alpha} \in \mathfrak{R}_{n}^{2}$. Corresponding to each $\bar{\alpha} \in \mathfrak{R}_{n}^{2}$, we define the right translation $r(\bar{\alpha})$ on $\mathfrak{B}^{2}(\mathfrak{X})$ by

$$
\begin{gather*}
\mathrm{e}_{i}(\bar{b} \bar{\alpha})=\mathrm{e}_{j}(\bar{b}) a_{i}^{j}(\bar{\alpha}), \tag{2.3}\\
\mathrm{e}_{i k}(\bar{b} \bar{\alpha})=\mathrm{e}_{j}(\bar{b}) a_{i k}^{j}(\bar{\alpha})+\mathrm{e}_{j h}(\bar{b}) a_{i}^{j}(\bar{\alpha}) a_{k}^{h}(\bar{\alpha}), \tag{2.4}
\end{gather*}
$$

4) See the first reference in 2).
where we denote $r(\bar{\alpha})(\bar{b})$ simply by $\bar{b} \bar{\alpha}$.
By (2.1), we can define a natural imbedding $\iota: T(\mathfrak{X}) \rightarrow \mathfrak{I}^{2}(\mathfrak{X})$ by

$$
\iota \frac{\partial}{\partial u^{i}}=X_{i}
$$

and so we may identify X_{i} with $\partial / \partial u^{i}$. Let $\{\mathfrak{B}(\mathfrak{X}), \mathfrak{X}, \pi\}$ be the principal bundle of the tangent bundle $T(\mathfrak{X})$. Any point b of $\mathfrak{B}(\mathfrak{X})$ may be regarded as a frame of $T(\mathfrak{X})$ at the point $\pi(b)$ such that

$$
\mathrm{e}_{i}(b)=a_{i}^{j}(\alpha) \frac{\partial}{\partial u^{j}}{ }^{5)}
$$

Then, we can define a natural homomorphism $\sigma: \mathfrak{B}^{2}(\mathfrak{X}) \rightarrow \mathfrak{B}(\mathfrak{X})$ by

$$
\iota\left(\mathrm{e}_{i}(\sigma(\bar{b}))\right)=\mathrm{e}_{i}(\bar{b}) .
$$

By this definition, it follows that $\bar{\pi}=\pi \cdot \sigma$ and $\tau=\bar{\tau} \cdot \iota$.
By virtue of (2.3), we see that $\mathfrak{B}(\mathfrak{X})=\mathfrak{B}^{2}(\mathfrak{X}) / \mathfrak{R}_{n}^{2}$ and $\left\{\mathfrak{B}^{2}(\mathfrak{X}), \mathfrak{B}(\mathfrak{X}), \sigma\right\}$ is a vector bundle. Furthermore for any $\bar{\alpha} \in \mathfrak{R}_{n}^{2}$, we have easily

$$
\begin{equation*}
\sigma \cdot r(\bar{\alpha})=r(\sigma(\bar{\alpha})) \cdot \sigma . \tag{2.5}
\end{equation*}
$$

3. Connections. Theorem. Any connection Γ of $T(\mathfrak{X})$ determines a cross section ρ of $\left\{\mathfrak{B}^{2}(\mathfrak{X}), \mathfrak{B}(\mathfrak{X}), \sigma\right\}$ invariant under the right translations. Conversely, such a cross section determines a connection I of $T(\mathfrak{X}) .{ }^{6}$

Proof. Let $\Gamma_{i k}^{j}$ be the components of a given connection Γ of $T(\mathfrak{X})$ with respect to a coordinate neighborhood (U, u^{i}). For any $b \in \pi^{-1}(U), \mathrm{e}_{i}(b)=a_{i}^{j}(\alpha) \frac{\partial}{\partial u^{j}}$, we put $\bar{b}=\rho(b)$ by

$$
\mathrm{e}_{i}(\bar{b})=\mathrm{e}_{i}(b), \mathrm{e}_{i k}(\bar{b})=\left(X_{j h}-\Gamma_{j h}^{l} X_{l}\right) a_{i}^{j}(\alpha) a_{k}^{h}(\alpha),
$$

that is

$$
\begin{equation*}
\sigma(\bar{\alpha})=\alpha, a_{i k}^{j}(\bar{\alpha})=-\Gamma_{b l}^{j} a_{i}^{h}(\alpha) a_{k}^{l}(\alpha), \tag{3.1}
\end{equation*}
$$

from which we get easily the equations

$$
\begin{equation*}
a_{i k}^{j}\left(\eta\left(\bar{\alpha}^{-1}\right)\right)=\Gamma_{i k .}^{j} . \tag{3.2}
\end{equation*}
$$

For another coordinate neighborhood $\left(V, v^{i}\right)$, let $\beta, \bar{\beta}$ be the corresponding elements in $L_{n}^{1}, \mathfrak{R}_{n}^{2}$ respectively, then it must be

$$
a_{i k}^{j}(\bar{\beta})=-\left(\frac{\partial v^{j}}{\partial u^{m}} \Gamma_{t s}^{m} \frac{\partial u^{t}}{\partial v^{h}} \frac{\partial u^{s}}{\partial v^{l}}+\frac{\partial v^{j}}{\partial u^{m}} \frac{\partial^{2} u^{m}}{\partial v^{l} \partial v^{h}}\right) a_{i}^{h}(\beta) a_{k}^{l}(\beta) .
$$

Since $a_{i}^{j}(\alpha)=\frac{\partial u^{j}}{\partial v^{h}} a_{i}^{h}(\beta)$, the equations above can be written as

$$
\begin{aligned}
a_{i k}^{j}(\bar{\beta}) & =-\frac{\partial v^{j}}{\partial u^{m}} \Gamma_{h l}^{m} a_{i}^{h}(\alpha) a_{k}^{l}(\alpha)+\frac{\partial^{2} v^{j}}{\partial u^{l} u^{h}} a_{i}^{h}(\alpha) a_{k}^{l}(\alpha) \\
& =a_{i k}^{j}\left(g_{V U} \cdot \bar{\alpha}\right),
\end{aligned}
$$

where $g_{V U} \in \mathfrak{R}_{n}^{3}$ is the coordinate transformation of $\mathfrak{I}^{2}(\mathfrak{X})$ with respect to (U, u^{i}) and (V, v^{i}) such that
5) We will also use the same notation e_{i} in $T(\mathfrak{X})$ as in $\mathfrak{L}^{2}(\mathfrak{X})$, according to the above-mentioned consideration.
6) In the following, we shall consider only differentiable mappings with suitable differentiabilities.

$$
a_{i}^{j}\left(g_{V U}\right)=\frac{\partial v^{j}}{\partial u^{i}}, \quad a_{i k}^{j}\left(g_{V U}\right)=\frac{\partial^{2} v^{j}}{\partial u^{k} \partial u^{i}} .
$$

These equations show that ρ is well defined on the whole space $\mathfrak{B}(\mathfrak{X})$ as a cross section of $\left\{\mathfrak{B}^{2}(\mathfrak{X}), \mathfrak{B}(\mathfrak{X}), \sigma\right\}$.

Since we have $\mathrm{e}_{i}\left(b \alpha_{0}\right)=\alpha^{j}\left(\alpha \alpha_{0}\right) \frac{\partial}{\partial u^{j}}$ for any $\alpha_{0} \in L_{n}^{1}$, we get easily

$$
\begin{aligned}
\mathrm{e}_{i}\left(\rho\left(b \alpha_{0}\right)\right) & =\mathrm{e}_{i}\left(b \alpha_{0}\right)=\mathrm{e}_{j}(b) a_{i}^{j}\left(\alpha_{0}\right)=\mathrm{e}_{j}(\rho(b)) a_{i}^{j}\left(\alpha_{0}\right), \\
\mathrm{e}_{i k}\left(\rho\left(b \alpha_{0}\right)\right) & =\left(X_{j h}-\Gamma_{j h}^{l} X_{i}\right) a_{i}^{j}\left(\alpha \alpha_{0}\right) a_{k}^{h}\left(\alpha \alpha_{0}\right) \\
& =\mathrm{e}_{j h}(\rho(b)) a_{i}^{j}\left(\alpha_{0}\right) a_{k}^{h}\left(\alpha_{0}\right),
\end{aligned}
$$

hence by (2.4) and $a_{i k}^{j}\left(\alpha_{0}\right)=0$ we obtain

$$
\begin{equation*}
\rho \cdot r\left(\alpha_{0}\right)=r\left(\alpha_{0}\right) \cdot \rho . \tag{3.3}
\end{equation*}
$$

Conversely, let be given a cross section ρ of $\left\{\mathfrak{B}^{2}(\mathfrak{X}), \mathfrak{B}(\mathfrak{X}), \sigma\right\}$ satisfying (3.3). For the coordinate neighborhood $\left(U, u^{i}\right), b \in \pi^{-1}(U), \bar{b}=\rho(b)$, we put

$$
\mathrm{e}_{i k}(\bar{b})=X_{j} a_{i k}^{j}(\bar{\alpha})+X_{j h} a_{i}^{j}(\bar{\alpha}) a_{k}^{h}(\bar{\alpha}) .
$$

By (3.3), we have $\rho\left(b \alpha_{0}\right)=\rho(b) \alpha_{0}$ for any $\alpha_{0} \in L_{n}^{1}$. Hence by means of (1.8), (1.6), we get

$$
\begin{aligned}
& a_{i k}^{j}\left(\eta\left(\left(\bar{\alpha} \alpha_{0}\right)^{-1}\right)\right)=\alpha_{i k}^{j}\left(\eta\left(\alpha_{0}^{-1} \bar{\alpha}^{-1}\right)\right) \\
& =a_{i k}^{j}\left(\bar{\alpha} \eta\left(\alpha_{0}^{-1}\right) \bar{\alpha}^{-1}\right)+a_{i k}^{j}\left(\eta\left(\bar{\alpha}^{-1}\right)\right)=a_{i k}^{j}\left(\eta\left(\bar{\alpha}^{-1}\right)\right) .
\end{aligned}
$$

This shows that

$$
I_{i k}^{j}=a_{i k}^{j}\left(\eta\left(\bar{\alpha}^{-1}\right)\right)
$$

depends only on the coordinate neighborhood (U, u^{i}). We can easily prove that $\Gamma_{i k}^{j}$ are the components of a connection Γ of $T(\mathfrak{X})$ with respect to the coordinate neighborhood. The proof is completed.

By virtue of this theorem, we may regard an affine connection of \mathfrak{X} as an invariant cross section of $\left\{\mathfrak{B}^{2}(\mathfrak{X}), \mathfrak{B}(\mathfrak{X}), \sigma\right\}$. Let ρ, ρ_{1} be the invariant cross sections corresponding to any two given connections Γ, I_{1} of $T(\mathfrak{X})$ respectively. Then we define a mapping $\xi: \mathfrak{B}(\mathfrak{X}) \rightarrow \mathfrak{R}_{n}^{2}$ by

$$
\begin{equation*}
\rho_{1}(b)=\rho(b) \xi(b) \tag{3.4}
\end{equation*}
$$

By (3.3), (3.4), we get easily, for any $\alpha \in L_{n}^{1}, \xi(b \alpha)=\alpha^{-1} \xi(b) \alpha$ or

$$
\begin{equation*}
\xi \cdot r(\alpha)=A\left(\alpha^{-1}\right) \cdot \xi \cdot .^{7} \tag{3.5}
\end{equation*}
$$

4. Connections of the type (\mathfrak{F}, ζ). Let \mathfrak{F} be a subgroup (linear subspace) of \Re_{n}^{2} and $Z=Z_{\Im}$ be the subgroup of L_{n}^{1} of all elements α such that $\alpha \mathfrak{Y} \alpha^{-1}=\mathfrak{Y}$. Let $\zeta: \mathfrak{X} \rightarrow \mathfrak{B} / Z$ be a cross section of the fibre bundle $\{\mathfrak{B} / Z, \mathfrak{X}\}$, where $\mathfrak{B}=\mathfrak{B}(\mathfrak{X})$.

For any point $b \in \mathfrak{B}$, if we have $b \alpha^{-1} / Z=\zeta(\pi(b))$, then we put $\mathcal{Y}(b)=\alpha^{-1} \mathcal{Y} \alpha$. This definition is clearly independent of the choice of such $\alpha \in L_{n}^{1}$. For any $\beta \in L_{n}^{1}$, we get easily

$$
\begin{equation*}
\mathfrak{Y}(b \beta)=\beta^{-1} \mathfrak{Y}(b) \beta \tag{4.1}
\end{equation*}
$$

Then, we can prove that the union
7) Here, we understand that $A(\alpha)$ denotes the inner automorphism of the group \AA_{n}^{2} in the ordinary sense.

$$
\begin{equation*}
\bigcup_{b \in \mathfrak{F}}\left(\sigma^{-1}(b) / \mathfrak{F}(b)\right)=\mathfrak{B}(\Im, \zeta) \tag{4.2}
\end{equation*}
$$

may be regarded naturally as a differentiable manifold. Let $\psi: \mathfrak{B}^{2} \rightarrow \mathfrak{B}(\mathfrak{Y}, \zeta)$
 and $\bar{\sigma}: \mathfrak{B}(\mathfrak{F}, \zeta) \rightarrow \mathfrak{B}$ be the natural projections. Thus, we obtain the diagram. $\left\{\mathfrak{B}^{2}, \mathfrak{B}(\mathfrak{F}, \zeta), \psi\right\}$ and $\{\mathfrak{B}(\mathfrak{F}, \zeta)$, $\mathfrak{B}, \bar{\sigma}\}$ are fibre spaces. ${ }^{8)}$ Take any $\bar{b} \in \mathfrak{B}^{2}, \bar{\beta} \in \mathfrak{R}_{n}^{3}$ and put $b=\sigma(\bar{b}), \beta=\sigma(\bar{\beta})$. By means of (1.5), (4.1), we have $\bar{b} \Im(b) \bar{\beta}=\bar{b} \Im(b) \beta \eta(\bar{\beta})=\bar{b} \bar{\beta} \Im(b \beta)$. This equation shows that $r(\bar{\beta})$ may be considered as an operation defined on $\mathfrak{B}(\mathfrak{Y}, \zeta)$, which we shall denote by the same notation. Hence, we have

$$
\begin{equation*}
\psi \cdot r(\bar{\alpha})=r(\bar{\alpha}) \cdot \psi, \quad \bar{\alpha} \in \mathfrak{R}_{n}^{2} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\sigma} \cdot r(\bar{\alpha})=r(\sigma(\bar{\alpha})) \cdot \bar{\sigma} \tag{4.4}
\end{equation*}
$$

Now, for any invariant cross section $\rho: \mathfrak{B} \rightarrow \mathfrak{B}^{2}$, the cross section

$$
\begin{equation*}
\bar{\rho}=\psi \cdot \rho \tag{4.5}
\end{equation*}
$$

of the fibre space $\{\mathfrak{B}(\Im, \zeta), \mathfrak{B}, \bar{\sigma}\}$ is also invariant under the group L_{n}^{1} by means of (3.3) and (4.3), that is for any element $\alpha \in L_{n}^{1}$,

$$
\begin{equation*}
\bar{\rho} \cdot r(\alpha)=r(\alpha) \cdot \bar{\rho} . \tag{4.6}
\end{equation*}
$$

We will say that any invariant cross section $\bar{\rho}$ of $\{\mathfrak{B}(\mathfrak{Y}, \zeta), \mathfrak{B}, \bar{\sigma}\}$ defines a connection of the type (Э) with respect to the cross section $\zeta: \mathfrak{X} \rightarrow \mathfrak{B} / Z_{\mathfrak{J}}$ and simply call it a (\mathfrak{F}, ζ)-connection of \mathfrak{X}. If there exists an invariant cross section $\rho: \mathfrak{B} \rightarrow \mathfrak{B}^{2}$ such that $\bar{\rho}=\psi \cdot \rho$, we call it an affine representative of $\bar{\rho}$.

Now, when \mathfrak{F} is invariant under any inner automorphism $A(\alpha)$, $\alpha \in L_{n}^{1}$, we have $Z_{\mathfrak{Y}}=L_{n}^{1}$. Hence ζ is always the identity transformation on \mathfrak{X} and $\mathfrak{B}(\mathfrak{Y}, \zeta)=\mathfrak{B}^{2} / \mathfrak{Y}$.

Example 1. When $\mathfrak{F}=\{e\}$, a (\Im)-connection is a connection of $T(\mathfrak{X})$. When $\mathfrak{F}=\mathfrak{N}_{n}^{2}$, a (\mathfrak{F})-connection is trivial, since $\mathfrak{B}(\mathfrak{F}, \zeta)=\mathfrak{B}$.

Example 2. When $\mathfrak{F}=\left\{\beta \mid a_{i k}^{j}(\beta)=\delta_{i}^{j} p_{k}+p_{i} \delta_{k}^{j}\right\}$, a ($\left.\mathfrak{F}\right)$-connection is clearly a projective connection in the ordinary sense.

Lastly, we shall give two examples such that \mathfrak{F} is not invariant.
Example 3. When $\mathfrak{F}=\left\{\beta \mid \alpha_{i k}^{j}(\beta)=\delta_{i}^{j} p_{k}+p_{i} \delta_{k}^{j}-\delta_{i k} p_{j}\right\}, Z=Z_{\mathfrak{F}}$ is the subgroup of L_{n}^{1} under which the equation $\sum x^{i} x^{i}=0$ is invariant, that is, the Euclidean angle is invariant. \mathfrak{B} / Z is the space of all conical surfaces of signature n in the tangent space at each point of \mathfrak{X}. Hence a cross section $\zeta: \mathfrak{X} \rightarrow \mathfrak{B} / Z$ is a field of such conical surfaces over \mathfrak{X}. Accordingly, a (\mathfrak{Y}, ζ)-connection is a sort of conformal connections and the conformal connections in the ordinary sense are the one determined from ζ by a rule such that the angles measured by ζ are
8) $\left\{\mathfrak{B}^{2}, \mathfrak{F}(\mathfrak{F}, \zeta), \psi\right\}$ is not a principal fibre bundle in the ordinary sense but it becomes so when \mathfrak{F} is invariant under the group L_{n}^{1}. See N. Steenrod: The Topology of Fibre Bundle, Princeton, §8 (1951).
always invariant under parallel displacement along any curve with respect to any one of its affine representatives.

Example 4. When $\mathfrak{J}=\left\{\beta \mid a_{i k}^{j}(\beta)=\delta_{i}^{j} \delta_{k}^{n} p\right\}, Z=Z_{\mathfrak{F}}$ is the subgroup of L_{n}^{1} under which the coordinate hyperplane $x^{n}=0$ in R^{n} is invariant. \mathfrak{B} / Z is the space of all cotangent directions of \mathfrak{X}. Hence a cross section $\zeta: \mathfrak{X} \rightarrow \mathfrak{B} / Z$ is a field of ($n-1$)-dimensional tangent subspaces of \mathfrak{X}. In this case, we can prove the following proposition.

Proposition. In order that two affine connections are representatives of $a(\Im, \zeta)$-connection, it is necessary and sufficient that
(i) any field of tangent directions of \mathfrak{X} defined on any curve has the same development with respect to the two connections and
(ii) the induced connections from the two connections on any curve tangent to ζ at each of its points coincide with each other.

[^0]: 1) See T. Ōtsuki: Geometries of Connections (in Japanese), Kyoritsu Shuppan Co. (1957).
 2) C. Ehresmann: Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie (Espaces fibrés), 29-55 (1950); S. S. Chern: Lecture note on differential geometry, Chicago University (1950).
 3) See C. Ehresmann: Les prolongements d'une variété differentiable I. Calcul des jets, prolongement principal, C. R. Acad. Sci., Paris, 233, 598-600 (1951).
