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76. On Tangent Bundles of Order 2 and
Affine Connections

By Tominosuke OTSUK
Department of Mathematics, 0kayama University, Japan

(Comm. by Z. SUETUNA, M.J.A., June 12, 1958)

In this paper, the author will show that the classical connections,
for instance, the affine, projective, conformal connections, can be con-
sidered from a unificative standpoint by means of the concept of
tangent bundles of order 2, although they can be also discussed through
the theory of connections of vector bundles. 1) We shall investigate
the relations between this theory and the ones of C. Ehresmann and
S.S. Chern) in Mathematical Journal of Okayama University, 8.

1o The group . According to C. Ehresmann, let L be the
group of the infinitesimal isotropies of order 2 at the origin of R",
whose any element is written as a set of numbers (a, a) such that
a 0, a-a.. We can easily see that the set of (a, a) such
that only al0, also forms a group containing L as a subgroup
with the multiplication as follows:

For any two a, e, /=af is defined by

a(7)-a(a) a(), (1.1)
a(/) a(a) ah(t)+a(o) a(t) a(fl). (1.2)

By (1.1), we have a natural homomorphism a: -->L--GL(n,R) such
that

a(a(a)) a(a). (1.3)
As is well known, we may consider L as a subgroup of L, regarding
the second coordinates a of their elements as zero. Let be the
kernel of a. By means of (1.2), for any a,/e, we have

hence is a vector space of dimension n. We define a mapping

v" 9-> by
v()=(-). (1.4)

Then, we can write uniquely any element of 9 as a product of
a(a) e L and V(a)

1) See T. (tsuki: Geometries of Connections (in Japanese), Kyoritsu Shuppan
Co. (1957).

2) C. Ehresmann: Les connexions infinitdsimales dans un espace fibrd diffdren-
tiable, Colloque de Topologie (Espaces fibrds), 29-55 (1950); S.S. Chern: Lecture note
on differential geometry, Chicago University (1950).

3) See C. Ehresmann: Les prolongements d’une varidtd differentiable I. Calcul
des jets, prolongement principal, C. R. Acad. Sci., Paris, 233, 598-600 (1951).
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We get easily from the above formulas the following lemmas.
Lemma 1. For any o e P, / e, we have

ai(a-a) a(a-) a() a(a) a(a). (1.6)
Lemma 2. For any ,, we have

ai(V(a))- a(a-) a(a), (1.7)

2. The tangent space and associated principal bundle of order 2.
For any differentiable manifold of dimension n, we shall define
the tangent space () of order 2 which will contain the tangent
space T() in the ordinary sense. Let (u), i=1,..., n, be a system
of local coordinates of defined on an open neighborhood U. With
the coordinate neighborhood (U, u:), we associate n+n fields of vectors
X, X defined on U. Let Y., Y be the vector fields associated with
another coordinate neighborhood (V, V). If UV0, we assume that
they are related mutually as

X
3v 3v 3vX= Y--- Y. (2.2)
3u3u 3u 3u

These formulas easily show that, at any point x of , these vectors
define a vector space of dimension nn independent of local coordi-
nates. We call it the tangent space of order 2 of at the point x
and denote it by (). This is, in fact, wider than the one T2())

of C. Ehresmann which may be obtained by putting X-X. The
union

may be considered naturally as the total space of a vector bundle
{%(), , } with the natural projection , whose structure group is
9. For brevity, we denote also the vector bundle by the same no-
tation ().

Let {(), , } be the associated principal bundle of (). Any
point b of :() may be regarded as a frame of () at the point

(b) such that

e(b)--Xai(),
e(b) Xa()+

where e 9. Corresponding to each e 9, we define the right trans-
lation r() on () by

e(b) e(b)ai(), (2.3)
e(b) e(b)a()+e(b)ai()a(), (2.4)

4) See the first reference in 2).
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where we denote r()(b) simply by b.
By (2.1), we can define a natural imbedding T()-->() by

t3u
and so we may identify X with /3u. Let {(), , } be the principal
bundle of the tangent bundle T(). Any point b of ()may be re-
garded as a frame of T() at the point (b) such that

e(b)-a()..
Then, we can define a natural homomorphism a"()() by

t(e(a(b)))- e(b).
By this definition, it follows that -.a and r-.t.

By virtue of (2.3), we see that ()-()/ and {(), (), a}
is a vector bundle. Furthermore for any e 9, we have easily

(2.5). Connections. Theorem. Any connection F of T() deter-
mines a cross section of {(), (), a} invariant under the right
translations. Conversely, such a cross section determines a connection
1-’ of T().)

Proof. Let F, be the components of a given connection F of
T() with respect to a coordinate neighborhood (U, u). For any

b -(U), e(b)- a(a), we put b-- p(b) by

1 Xt)a,( )a(a),e(b) e(b), e(b)=(X-that is
a()--a,a()-- l,a,(a)a( ), (3.1)

from which we get easily the equations
a(v(-))-P,. (3.2)

For another coordinate neighborhood (V, v), let , B be the corre-
sponding elements in L, 9 respectively, then it must be

a()-- 3u 3u
3u

a()a().

Since a(a)-3Ua(), the equations above can be written as

a()----3vFa( a)a(a)+ 3v a(a)a(a)

a,(g.),
where g9 is the coordinate transformation of %() with respect
to (U, u) and (V, v) such that

5) We will also use the same notation e in T() as in (), according to the
above-mentioned consideration.

6) In the following, we shall consider only differentiable mappings with suitable
differentiabilities.
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ai(g,) 3v a(g,)
3u 3uu

These equations show that p is well defined on the whole space ()
as a cross section of {(), (), a}.

Since we have e(bao)-a(aao) 3 for any ao e L, we get easily

e((b0)) e(b0) %(b)a(0) e.((b))a(0),
e((b0)) (X FX)ai(o)a(o)

e (p(b))ai(o)a(o)
hence by (2.4) and a,(ao) =0 we obtain

p’r(o)--r(o)’p. (8.a)
Conversely, let be given a cross section p of {(), (), a} satis-

fying (3.3). For the coordinate neighborhood (U, u), b e -*(U), b-p(b),
we put

e,(b) Xai(a) - -+Xa()a().
By (3.3), we have p(bao)--p(b)ao for any a0e L. Hence by means of
(1.8), (1.6), we get

ai(v((a0)-))- ai(V(aj ))
ai(,(,)-)+a/(,(- )) ai(,(-)).

This shows that
,=ai((-))

depends only on the coordinate neighborhood (U, u). We can easily
prove that F are the components of a connection F of T() with
respect to the coordinate neighborhood. The proof is completed.

By virtue of this theorem, we may regard an affine connection
of as an invariant cross section of {(5), (), a}. Let p, p be the
invariant cross sections corresponding to any two given connections
F, 1 of T() respectively. Then we define a mapping $’()
by

(b) v(b)$(b). (8.4)
By (a.a), (8.4), we get easily, for any a eL, (ba)-a-$(b)a or

$.r(,)-A(-).$. (8.5). Connections of the type (3, ). Let 3 be a subgroup (linear
subspace) of and Z=Z3 be the subgroup of L of all elements a

such that 3--3. Let $’5/Z be a cross section of the fibre
bundle {3/Z, }, where 3-3().

For any point b, if we have ba-/Z=((b)), then we put
3(b)-a-3a. This definition is clearly independent of the choice of
such a eL. For any L, we get easily

3(bZ)-Z-5(b)Z. (4.1)
Then, we can prove that the union

7) Here, we understand that A(a) denotes the inner automorphism of the grou
in the ordinary sense.
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U be(a-l(b)/3(b))-(, ) (4.2)
may be regarded naturally as a differentiable manifold. Letk:-((,). and "(,)- be the natural projections. Thus,

|---z(3, ) we obtain the diagram. {, ((, ), k} and {((, ),

a/_ , } are_fibre spaces.

_
Take any and

vr |’/_/Z put .b-a(b),..../-a().By means of (1.5), (4.1), we

have b(b)-_b(b)() b(bfl). This equation

Diagrma shows that r() may be considered as an operation
defined on (,,), which we shall denote by the same notation.
Hence, we have

q,. (4.3)
and . r()-- r(a()).. (4.4)

Now, for any invariant cross section p"-3, the cross section
-q. (4.5)

of the fibre space {(3, if), , } is also invariant under the group L
by means of (3.3) and (4.3), that is for any element a e L,

.r(a)--r(er).. (4.6)
We will say that any invariant cross section of {(,, if), , }

defines a connection of the type (,) with respect to the cross section

" -->/Z and simply call it a ((, )-connection of . If there exists
an invariant cross section p’-> such that =q.p, we call it an

adine representative of .
Now, when 3 is invariant under any inner automorphism A(),

a e L, we have Z--L. Hence ff is always the identity transformation
on 5 and ((, ff)-/3.

Example 1. When (-{e}, a (()-connection is a connection of
T(). When --, a 3)-connection is trivial, since .(, ff)--.

Example 2. When @--{lak(fl)--3pq-p3}, a (,)-connection is
clearly a projective connection in the ordinary sense.

Lastly, we shall give two examples such that ( is not invariant.
Example 3. When -{]ak()-3p 3pj} Z--+pG-- Z is the

subgroup of L under which the equation Y,xx*-0 is invariant, that
is, the Euclidean angle is invariant. /Z is the space of all conical
surfaces of signature n in the tangent space at each point of .
Hence a cross section if" -->/Z is a field of such conical surfaces
over . Accordingly, a (3, ff)-connection is a sort of conformal connec-
tions and the conformal connections in the ordinary sense are the one
determined from ff by a rule such that the angles measured by ff are

8) {, (, ), } is not a principal fibre bundle in the ordinary sense but it becomes
so when 8 is invariant under the group L. See N. Steenrod: The Topology of Fibre
Bundle, Princeton, 8 (1951).
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always invariant under parallel displacement along any curve with
respect to any one of its affine representatives.

txample 4. When (-- {/ a(/)-p}, Z--Z is the subgroup
of L under which the coordinate hyperplane z-0 in R is invariant.
/Z is the space of all cotangent directions of . Hence a cross
section -->/Z is a field of (n-- 1)-dimensional tangent subspaces
of . In this case, we can prove the following proposition.

Proposition. In order tha two ane connections are representa-
tives of a (, )-connection, it is necessary and sufficient that

i) any field of tangent directions of defined on any curve
has the same development with respect to the two connections and

(ii) the induced connections from the two connections on any
curve tangent to at each of its points coincide with each other.


