107. A Remark on My Paper "A Boundary Value Problem of Partial Differential Equations of Parabolic Type" in Duke Mathematical Journal

By Seizô Itô
Department of Mathematics, University of Tokyo
(Comm. by Z. Suetuna, m.J.A., Oct. 13, 1958)

§ 1. Introduction. Recently Dr. T. Shirota kindly called the author's attention to the following fact; - in the author's paper [1] published in Duke Mathematical Journal, 24, the continuity of $p_{z}(t, x$; $s, y)$ - and accordingly that of the fundamental solution $u(t, x ; s, y)$ in $y \in \boldsymbol{B}$ is not obvious in the case where $\alpha(t, \xi)$ takes the value zero for some $\langle t, \xi\rangle$ and is not identically zero. The same situation occurs in the author's another paper [2]. In the present note, instead of completing the proof of the continuity of the fundamental solution, we shall slightly modify the argument in [1].

The argument in the present note may be adapted to [2]. By the way, we state the following correction to the paper [2]; -$\left[1-p_{z}(s, y ; t, x)\right]$ in the numerator of the right-hand side of (3.24) in [2, p. 63] should be replaced by $p_{z}(s, y ; t, x)$.
§2. Construction of the fundamental solution. We shall use notations stated in [1] without repeating definitions of them. We first notice that, if $\alpha(t, \xi)$ identically equals zero or is bounded away from zero, $p_{z}(t, x ; s, y)$ has desired regularity and accordingly $u(t, x ; s, y)$ does.

For each $n \geq 1$, let $\chi_{n}(\lambda)$ be a monotone increasing function of class C^{3} in $\lambda \in[0,1]$ such that

$$
\begin{align*}
\chi_{n}(\lambda) & =1 /(n+1) & & \text { for } \lambda \leq 1 /(n+2) \tag{1}\\
& =\lambda & & \text { for } \lambda \geq 1 / n .
\end{align*}
$$

We define $\alpha_{n}(t, \xi)$ and $\beta_{n}(t, \xi)$ on $\left[s_{0}, t_{0}\right] \times \boldsymbol{B}$ for $n=0,1,2, \cdots$ as follows:

$$
\left\{\begin{array}{l}
\alpha_{0}(t, \xi)=0, \quad \alpha_{n}(t, \xi)=\chi_{n}(\alpha(t, \xi)) \quad(n \geq 1) \tag{2}\\
\text { and } \quad \beta_{n}(t, \xi)=1-\alpha_{n}(t, \xi) \quad(n=0,1,2, \cdots)
\end{array}\right.
$$

where $\alpha(t, \xi)$ is the function stated in the given boundary condition $\left(\mathrm{B}_{\varphi}^{t}\right)$ in [1]. Then, for each $n \geq 0$, we may apply the argument in [1] to the parabolic equation $L f+h=0$ associated with boundary condition: $\left(\mathrm{B}_{n, \varphi}^{t}\right) \quad \alpha_{n}(t, \xi) f(t, \xi)+\beta_{n}(t, \xi)\left[\partial f(t, \xi) / \partial \boldsymbol{n}_{t, \xi}\right]=\varphi(t, \xi)$,
and obtain the fundamental solution $u_{n}(t, x ; s, y)$ with all properties stated in [1] where (B_{φ}^{t}) is replaced by ($\mathrm{B}_{n, \varphi}^{t}$).

Let $f(x)$ be an arbitrary continuous and non-negative function on $\overline{\boldsymbol{D}}$ and put

$$
\begin{equation*}
f_{n}(t, x)=\int_{D} u_{n}(t, x ; s, y) f(y) d y \quad(n \geq 0) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{n \nu}(t, \xi)=\alpha_{n}(t, \xi) f_{\nu}(t, \xi)+\beta_{n}(t, \xi) \frac{\partial f_{\nu}(t, \xi)}{\partial \boldsymbol{n}_{t, \xi}} \quad(\nu \geq n \geq 0) \tag{4}
\end{equation*}
$$

Then $\beta_{\nu} \varphi_{n \nu}=\left(\alpha_{n} \beta_{\nu}-\alpha_{\nu} \beta_{n}\right) f_{\nu}=\left(\alpha_{n}-\alpha_{\nu}\right) f_{\nu}$, and hence

$$
\varphi_{n \nu}(t, \xi)=\left\{\begin{array}{l}
{\left[\alpha_{n}(t, \xi)-\alpha_{\nu}(t, \xi)\right]\left[1-\alpha_{\nu}(t, \xi)\right]^{-1} f_{\nu}(t, \xi)} \tag{5}\\
0 \\
\text { if } \alpha(t, \xi) \leq 1 / n \\
\text { if } \alpha(t, \xi)>1 / n
\end{array}\right.
$$

and

$$
\varphi_{0 \nu}(t, \xi)= \begin{cases}-\alpha_{\nu}(t, \xi)\left[1-\alpha_{\nu}(t, \xi)\right]^{-1} f_{\nu}(t, \xi) \tag{6}\\ & \text { if } \alpha(t, \xi) \neq 1 \\ \partial f_{\nu}(t, \xi) / \partial \boldsymbol{n}_{t, \xi} & \text { if } \alpha(t, \xi)=1\end{cases}
$$

for $\nu \geq n \geq 1$. Furthermore, since $f_{\nu}(t, x)-f_{n}(t, x)$ satisfies the equation $L\left[f_{\nu}-f_{n}\right]=0$ on $\left(s, t_{0}\right) \times \overline{\boldsymbol{D}}$, initial condition: $\lim _{t \neq s}\left[f_{\nu}-f_{n}\right]=0$ boundedly on \boldsymbol{D}, and boundary condition $\left(\mathrm{B}_{n, \phi}^{t}\right)$ with $\psi \stackrel{t \neq s}{\varphi_{n v}}$, we have (see part iii of Theorem in [1])

$$
\begin{align*}
f_{\nu}(t, x)-f_{n}(t, x)=\int_{s}^{t} d \tau & \int_{\boldsymbol{B}}\left\{u_{n}(t, x ; \tau, \xi)[1+\psi(\tau, \xi)]\right. \tag{7}\\
& \left.-\partial u_{n}(t, x ; \tau, \xi) / \partial \boldsymbol{n}_{\tau, \xi}\right\} \varphi_{n \nu}(\tau, \xi) d_{\tau}^{\prime} \xi .
\end{align*}
$$

Since $u_{n}(t, x ; s, y)$ is non-negative ((1.5) in [1]) and satisfies the boundary condition of the form (4.12) in [1] as a function of $\langle s, y\rangle$, the value of the function in \{ \} in the right-hand side of (7) is always nonnegative, while $\varphi_{n \nu}(\tau, \xi) \geq 0 \geq \varphi_{0 \nu}(\tau, \xi)$ for $\nu \geq n \geq 1$ by virtue of (5) and (6). Hence we have

$$
f_{n}(t, x) \leq f_{\nu}(t, x) \leq f_{0}(t, x) \quad \text { for } \nu \geq n \geq 1
$$

and hence

$$
u_{n}(t, x ; s, y) \leq u_{\nu}(t, x ; s, y) \leq u_{0}(t, x ; s, y) \quad \text { for } \quad \nu \geq n \geq 1
$$

since $f(x)$ is arbitrary in (3). Therefore

$$
\begin{equation*}
u(t, x ; s, y)=\lim _{n \rightarrow \infty} u_{n}(t, x ; s, y) \tag{8}
\end{equation*}
$$

exists and does not exceed $u_{0}(t, x ; s, y)$.
It follows from (3), (5) and (7) that

$$
\begin{gather*}
u(t, x ; s, y)-u_{n}(t, x ; s, y)=\int_{s}^{t} d \tau \int_{\boldsymbol{B}}\left\{u_{n}(t, x ; \tau, \xi)[1+\Psi(\tau, \xi)]\right. \tag{9}\\
\left.-\partial u_{n}(t, x ; \tau, \xi) / \partial \boldsymbol{n}_{\tau, \xi}\right\} \Phi_{n \nu}(\tau, \xi ; s, y) d_{\tau}^{\prime} \xi
\end{gather*}
$$

where

$$
\begin{align*}
& \Phi_{n \nu}(t, \xi ; s, y) \\
& \quad= \begin{cases}{\left[\alpha_{n}(t, \xi)-\alpha_{\nu}(t, \xi)\right]\left[1-\alpha_{\nu}(t, \xi)\right]^{-1} u_{\nu}(t, \xi ; s, y)} & \text { if } \alpha(t, \xi) \leq 1 / n \\
0 & \text { if } \alpha(t, \xi)>1 / n\end{cases} \tag{10}
\end{align*}
$$

for $\nu \geq n \geq 1$. Letting $\nu \rightarrow \infty$, we obtain

$$
\begin{align*}
& u(t, x ; s, y)-u_{n}(t, x ; s, y) \\
& =\int_{s}^{t} d \tau \int_{\boldsymbol{B}}\left\{u_{n}(t, x ; \tau, \xi)[1+\Psi(\tau, \xi)]\right. \tag{11}\\
& \left.\quad-\partial u_{n}(t, x ; \tau, \xi) / \partial \boldsymbol{n}_{\tau, \xi}\right\} \Phi_{n}(\tau, \xi ; s, y) d_{\tau}^{\prime} \xi
\end{align*}
$$

where

$$
\begin{align*}
& \Phi_{n}(t, \xi ; s, y) \\
& \quad= \begin{cases}{\left[\alpha_{n}(t, \xi)-\alpha(t, \xi)\right][1-\alpha(t, \xi)]^{-1} u(t, \xi ; s, y)} & \text { if } \alpha(t, \xi) \leq 1 / n, \\
0 & \text { if } \alpha(t, \xi)>1 / n\end{cases} \tag{12}
\end{align*}
$$

for $n \geq 1$. Since $u_{n}(t, x ; s, y)$ has all properties stated in Theorem in [$1, \S 1$] where (B_{φ}^{t}) is replaced by ($\mathrm{B}_{n, \varphi}^{t}$), it follows from (11) and (12) that $u(t, x ; s, y)$ satisfies (1.1-7) and (3.13) in [1]-we shall prove only (1.2); all other properties may be proved more easily.

Part ii) of Theorem in [1] and (11) imply that $u(t, x ; s, y)$ $u_{n}(t, x ; s, y)$ satisfies the boundary condition $\left(\mathrm{B}_{n, \psi_{n}}^{t}\right)$ with $\psi_{n}(t, \xi)=$ $\Phi_{n}(t, \xi ; s, y)$ for any fixed $\langle s, y\rangle$. Hence, at any point $\langle t, \xi\rangle$ where $\alpha(t, \xi)>0, u(t, x ; s, y)$ satisfies (1.2) in [1] as well as $u_{n}(t, x ; s, y)$ since $\alpha_{n}(t, \xi)=\alpha(t, \xi), \beta_{n}(t, \xi)=\beta(t, \xi)$ and $\psi_{n}(t, \xi)=0$ for sufficiently large n. At any point $\langle t, \xi\rangle$ where $\alpha(t, \xi)=0$, we have $\alpha_{n}(t, \xi)=(n+1)^{-1}$ (from (1) and (2)) and accordingly

$$
\begin{array}{r}
(n+1)^{-1} u(t, \xi ; s, y)+\left\{1-(n+1)^{-1}\right\} \frac{\partial u(t, \xi ; s, y)}{\partial \boldsymbol{n}_{t, \xi}} \\
=\Phi_{n}(t, \xi ; s, y)=(n+1)^{-1} u(t, \xi ; s, y) .
\end{array}
$$

Hence we get $\partial u(t, \xi ; s, y) / \partial \boldsymbol{n}_{t, \xi}=0$. Thus we obtain (1.2) in [1].
Similarly we may construct a function $u^{*}(t, x ; s, y)$ satisfying (1. $1^{*}, 2^{*}, 4^{*}$) and (3.13*) in [1] and, repeating the argument in [1, §4], we may show that $u(t, x ; s, y)$ has all required properties.

References

[1] S. Itô: A boundary value problem of partial differential equations of parabolic type, Duke Math. J., 24, 299-312 (1957).
[2] S. Itô: Fundamental solutions of parabolic differential equations and boundary value problems, Jap. J. Math., 27, 55-102 (1957).

