138. On a Generalization of the Concept of Functions. II

By Mikio SATO

Mathematical Institute, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1958)

In our previous paper [1], we have introduced the notion of *hyperfunctions* on C° -manifolds by means of boundary values of analytic functions as a generalization of the concept of functions, and sketched the theory thereof in case of dimension 1 (the theory of *hyperfunctions of a single variable*). The purpose of the present and subsequent papers is to give the outline of the theory in case of dimensions >1 (the theory of *hyperfunctions of several variables*).¹⁾

§1. Distributions of a sheaf. Let X be a topological space. We denote with $\mathfrak{L}(X)$ the totality of open sets of X. Let \mathfrak{F} be a sheaf of modules over X. For any $D \in \mathfrak{L}(X)$ and $n=0, 1, 2, \cdots$, we denote as usual the *n*-cohomology group of D with coefficients in \mathfrak{F} with $H^n(D, \mathfrak{F})$. $H^0(D, \mathfrak{F})$ is the section-module of \mathfrak{F} over D.

Let S be a closed subset of X. For any $D \in \mathfrak{L}(X)$ and n=0, 1, 2, ..., we define $G^n(S, D, \mathfrak{F})$ as follows: $G^0(S, D, \mathfrak{F})$ and $G^1(S, D, \mathfrak{F})$ are to mean the kernel and cokernel of the natural homomorphism $H^0(D, \mathfrak{F}) \rightarrow H^0(D-S, \mathfrak{F})$ respectively, and for $n \ge 2$ we put $G^n(S, D, \mathfrak{F}) = H^{n-1}(D-S, \mathfrak{F})$.

For $D \supset D'(D', D \in \mathfrak{L}(X))$ we have the natural homomorphism $\rho_{D'D}^n$: $G^n(S, D, \mathfrak{F}) \to G^n(S, D', \mathfrak{F})$. For each n, $(\{G^n(S, D, \mathfrak{F})\}_{D \in \mathfrak{L}(X)}, \{\rho_{D'D}^n\}_{D', D \in \mathfrak{L}(X)})$ constitutes a pre-sheaf over X. We shall denote with $\text{Dist}^n(S, X, \mathfrak{F})$ the sheaf over X determined by this pre-sheaf. $\text{Dist}^n(S, X, \mathfrak{F})$ has the stalk 0 at any point on X - S, and if $X' \in \mathfrak{L}(X)$, $X' \supseteq S$, the natural homomorphism $\text{Dist}^n(S, X, \mathfrak{F}) \to \text{Dist}^n(S, X', \mathfrak{F})$ is clearly bijective. In identifying these $\text{Dist}^n(S, X', \mathfrak{F})$, we shall denote the sheaf over S thus determined by $\text{Dist}^n(S, \mathfrak{F})$.

Definition 1. We call each element of $H^{0}(S, \text{Dist}^{n}(S, \mathfrak{F})) = H^{0}(X, \text{Dist}^{n}(S, X, \mathfrak{F}))$ an \mathfrak{F} -distribution of degree n over S.

It is clear that we have the natural homomorphism:

 $(1) \qquad \qquad G^n(S, X, \mathfrak{F}) \to H^0(S, \operatorname{Dist}^n(S, \mathfrak{F}))$

which is bijective for n=0.

Example 1. For S=X, we have $\text{Dist}^{0}(S, \mathfrak{F})=\mathfrak{F}$, $H^{0}(S, \text{Dist}^{0}(S, \mathfrak{F}))$ = $H^{0}(X, \mathfrak{F})$, while $\text{Dist}^{n}(S, \mathfrak{F})=0$ for $n \ge 1$.

Now let $\{X', \mathfrak{F}', S'\}$ be another triple consisting of a topological space X', a sheaf of modules \mathfrak{F}' over X', and a closed set S' of X'.

¹⁾ We have explained our theory, including the case of several variables, in [2] in Japanese. An English account will soon appear in J. Fac. Sci. Univ. Tokyo.

No. 9]

Let σ be a continuous mapping from (X', X'-S') into (X, X-S) (i.e. a continuous mapping from X' into X such that $\sigma(X'-S') \subset X-S)$, and θ be a homomorphism from \mathfrak{F} into \mathfrak{F}' compatible with σ . Then θ induces in a natural manner the homomorphism

 θ^* : Distⁿ(S, \mathfrak{F}) \rightarrow Distⁿ(S', \mathfrak{F}') (2)In particular, suppose $X' \in \mathfrak{L}(X)$, $X' \frown S \subset S'$, compatible with σ . $\sigma =$ injection $X' \rightarrow X$, and $\mathfrak{F}' = \mathfrak{F} \mid X' =$ restriction of \mathfrak{F} onto X'. Then the natural homomorphism $\text{Dist}^n(S, \mathfrak{F}) \to \text{Dist}^n(S', \mathfrak{F}')$ is induced, and hence also the homomorphism $H^{0}(S, \text{Dist}^{n}(S, \mathfrak{F})) \rightarrow H^{0}(S', \text{Dist}^{n}(S', \mathfrak{F}'))$. We shall denote with g | S' the image of $g \in H^0(S, \text{Dist}^n(S, \mathfrak{F}))$ by this homomorphism. Setting $S'' = X' \frown S$, we say that $g'' = g \mid S'' \in H^0(S',$ $\text{Dist}^n(S'', \mathfrak{F}')$ is the restriction of g onto S'' (which is an open subset of S), and $g'=g''|S'(=g|S') \in H^0(S', \text{Dist}^n(S', \mathfrak{F}'))$ is the dilution of g''onto S' (which contains S'' as a closed subset).

Representation by Čech cohomology. In order to obtain a more concrete representation of \mathfrak{F} -distributions over S we shall invoke to Cech's cohomology theory. Let $(\mathfrak{U},\mathfrak{U}')$ be an open covering of (X, \mathcal{U}) X-S, i.e. let $\mathfrak{l}=\{U_{\alpha}; \alpha \in N\}$ be an open covering of X, and $\mathfrak{l}'=\{U_{\alpha}; \alpha \in N\}$ $\alpha \in N'$, $N' \subset N$, a subset of \mathfrak{U} , which constitutes an open covering of X-S. For such $(\mathfrak{U}, \mathfrak{U}')$, we can define the cohomology groups $H^n(\mathfrak{U}, \mathfrak{F})$ and $H^n(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})$ as usual in the following way. An *n*-cochain $\varphi \in C^n(\mathfrak{U},\mathfrak{F})$ will be defined as a vector

$$(3) \qquad \qquad \varphi = (\varphi_{\alpha_0 \cdots \alpha_n})$$

(3) $\varphi = (\varphi_{\alpha_0 \dots \alpha_n}),$ with the components $\varphi_{\alpha_0 \dots \alpha_n} \in H(U_{\alpha_0} \frown \cdots \frown U_{\alpha_n}; \mathfrak{F})$ where we shall assume, without loss of generality, that $\varphi_{\alpha_0 \dots \alpha_n}$ are alternating for the permutation of suffices. Define the coboundary operator $\delta = \delta_N$ in a well-known manner. Then $C(\mathfrak{U},\mathfrak{F}) = \sum_{n\geq 0} C^n(\mathfrak{U},\mathfrak{F})$ constitutes a DG-module,²⁾ and $H^n(\mathfrak{U},\mathfrak{F})$ is defined by

(4) $H^n(\mathfrak{U},\mathfrak{F})=H^n(C(\mathfrak{U},\mathfrak{F})).$

We obtain $H^n(X,\mathfrak{F})$ as the inductive limit of $H^n(\mathfrak{U},\mathfrak{F})$ by refining the covering U. The relative cochain group $C^n = C^n(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})$ consists of such $\varphi \in C^n(\mathfrak{U},\mathfrak{F})$ whose components $\varphi_{\alpha_0\cdots\alpha_n}$ are all 0 for $\alpha_0,\cdots,\alpha_n \in N'$. $\sum_{n\geq 0} C^n = C(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})$ is a DG-submodule of $C(\mathfrak{U}, \mathfrak{F})$, and $H^n(\mathfrak{U} \mod \mathfrak{F})$ $\mathfrak{U}',\mathfrak{F}$) is defined by

 $H^{n}(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F}) = H^{n}(C(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})).$ (5)

Then we obtain $H^n(X \mod (X-S), \mathfrak{F})$ as the inductive limit of $H^n(\mathfrak{U})$ mod $\mathfrak{U}',\mathfrak{F}$) by refining $(\mathfrak{U},\mathfrak{U}')$, and we have the excision theorem (6) $H^n(X \mod (X-S), \mathfrak{F}) \simeq H^n(X' \mod (X'-S), \mathfrak{F})$ if $S \subset X' \in \mathfrak{L}(X)$. Now introduce a filtration-structure into $C = C(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})$ as follows. Let ${}^{p}C^{n} = {}^{p}C^{n}(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})$ be the submodule of C^{n} consisting of $\varphi =$ $(\varphi_{\alpha_0\cdots\alpha_n})$ such that $\varphi_{\alpha_0\cdots\alpha_n}=0$ if at least n+1-p elements of $\{\alpha_0,\cdots,\alpha_n\}$

²⁾ On the definition of DG-modules and other related notions, see [3].

are in N', then C constitutes an FDG-module having p and n as the filtration degree and the total degree respectively. We shall define, as usual,

(7) ${}^{p}Z_{r}^{n} = {}^{p}Z_{r}^{n}(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F}) =$ inverse image of ${}^{p+r}C^{n+1}$ in the homomorphism

$$\delta: \quad {}^{p}C^{n} \to {}^{p}C^{n+1},$$

(8) ${}^{p}E_{r}^{n}={}^{p}E_{r}^{n}(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})={}^{p}Z_{r}^{n} \mod ({}^{p+1}Z_{r-1}^{n}, \delta^{p-r+1}Z_{r-1}^{n-1}).$

For $r \ge 2$, we obtain ${}^{p}E_{r}^{n}(X \mod(X-S), \mathfrak{F})$ as the inductive limit of ${}^{p}E_{r}^{n}(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})$ by refining $(\mathfrak{U}, \mathfrak{U}').^{\mathfrak{F}}$ Among these, ${}^{p}E_{\mathfrak{F}}^{n}(X \mod(X-S), \mathfrak{F})$ is of particular importance, as we have a natural homomorphism (9) ${}^{p}E_{\mathfrak{F}}^{n}(X \mod(X-S), \mathfrak{F}) \rightarrow H^{p}(S, \operatorname{Dist}^{n}(S, \mathfrak{F})).$

Proposition 1. If X and X-S are both paracompact T_2 -spaces, then the homomorphism (9) is bijective. In particular, every \mathfrak{F} distribution g of degree n over S corresponds to an element of ${}^{0}E_{2}^{n}$ $(X \mod (X-S), \mathfrak{F})$ in a 1-1 manner.

Thus, under the assumptions of Proposition 1, each $g \in H^0(S, Dist^n(S, \mathfrak{F}))$ is determined by some $(\mathfrak{U}, \mathfrak{U}')$ covering (X, X-S') and some $\varphi \in {}^0Z_2^n(\mathfrak{U} \mod \mathfrak{U}', \mathfrak{F})$. We call this φ a defining function of g, and denote (10) $g = [\varphi] = [\varphi, \mathfrak{U}, \mathfrak{U}'].$

§ 2. Analytic distributions. Let $X=X^m$ be an analytic manifold of complex dimension m, and \mathfrak{F} be a locally free analytic sheaf over X, i.e. a sheaf consisting of the analytic local sections of some complex analytic vector bundle **B** over X. Let S be a closed subset of X.

Definition 2. An analytic distribution g of degree n (in short: an *n*-distribution) of type **B** over S is an \mathfrak{F} -distribution of degree nover S.

If $B=X\times C$, (C= complex number field), the qualifying phrase 'of type B' will be omitted, and if B is a vector bundle of differential forms, of tensors, or of differential operators etc. (of some given type, respectively), then the analytic distributions of the corresponding type B will be called the analytic distributions of differential forms, of tensors, of differential operators, etc.

Proposition 2. (i) Analytic distributions of degree n > m other than 0 of any type **B** do not exist. Namely, we have $\text{Dist}^n(S, \mathfrak{F})=0$, (n>m), for germs of analytic n-distributions over S.

(ii) $\text{Dist}^{m}(S, \mathfrak{F})$ is a complete sheaf⁴) for any type **B** and closed set S.

³⁾ Moreover, we can construct a spectral sequence connecting ${}^{p}E_{2}{}^{n}(X \mod (X-S), \mathfrak{F})$ to $H^{n}(X \mod (X-S), \mathfrak{F})$.

⁴⁾ A sheaf \mathfrak{F} is called *complete* or *hyperfine* if the natural homomorphism $H^0(D, \mathfrak{F}) \to H^0(D', \mathfrak{F})$ is surjective for every $D \supset D'$, $(D, D' \in \mathfrak{L}(X))$. A complete sheaf is always a fine sheaf, but the converse is not true. For instance, all the following sheaves are fine but not complete: the sheaf of germs of C^{∞} -functions over a C^{∞} -manifold; the sheaf of germs of Schwartz distributions over a C^{∞} -manifold; the sheaf of germs of continuous functions over a C^{0} -manifold; the sheaf of germs of locally integrable functions over a C^{1} -manifold.

Integration. Let us consider the particular case where $S \subset X^m$ is a compact set such that analytic distributions of degree < m over Sother than 0 do not exist. Then we can define the *definite integral* for an analytic *m*-distribution of *m*-differential forms. Replacing Xby a suitable X' such that $S \subset X' \in \mathfrak{L}(X)$ if necessary, we may assume that X is perfectly separable (and so X is paracompact) from the beginning. We may therefore put $g = [\varphi, \mathfrak{l}, \mathfrak{l}, \mathfrak{l}'], \varphi \in ^0Z_2^m(\mathfrak{l} \mod \mathfrak{l}', \mathfrak{F})$, where we can further assume that \mathfrak{l} is a locally finite covering and $\mathfrak{l} - \mathfrak{l}'$ is finite. Now, since $X = X^m$ is an orientable completely separable differentiable manifold of real dimension 2m, we can find differentiable 2m-chains V_{α} , $(\alpha \in N)$, such that (i) $|V_{\alpha}| \subset U_{\alpha}$ for every $\alpha \in N$, (ii) $|V_{\alpha}|$ is compact if $\alpha \in N'$, (iii) $\sum_{\alpha \in N} V_{\alpha}$ =the fundamental cycle of X. From these 2m-chains, we can further find differentiable (2m-n)-chains $V_{\alpha_0 \cdots \alpha_n}$ such that $|V_{\alpha_0} \cdots \cap U_{\alpha_n}$ with $n=1, 2, \cdots$ satisfying the following relations:

- i) $\partial V_{\alpha_0} = \sum_{\alpha_1} V_{\alpha_0 \alpha_1}, \ \partial V_{\alpha_0 \alpha_1} = \sum_{\alpha_2} V_{\alpha_0 \alpha_1 \alpha_2}, \cdots,$
- ii) $V_{\alpha_0 \cdots \alpha_n}$ is alternating for the permutations of suffices $\alpha_0, \cdots, \alpha_n$. Definition 3. We define the definite integral of g by

(11)
$$\underbrace{\int \cdots \int}_{m\text{-uple}} g = \sum_{(\alpha_0 \cdots \alpha_m)} \underbrace{\int \cdots \int}_{m\text{-uple}} \varphi_{\alpha_0 \cdots \alpha_m} \varphi_{\alpha_0 \cdots \alpha_m}^{(5)}$$

That the value of the integral does not depend on the choice of $(\varphi, \mathfrak{ll}, \mathfrak{ll}')$ and $\{V_{\alpha}\}$ follows from the integration theorem of Cauchy-Poincaré.

The notion of integration defined by (9) may be generalized in the following case.

Let σ be an open analytic mapping from (X, X-S) to (X', X'-S'), and assume that for each $x \in X'$ the inverse image $\sigma^{-1}(x)$ is a subvariety of X without singularity (of complex dimension n=m-m'>0, m and m' denoting the complex dimensions of X and X').

Let B' be an analytic vector bundle over X', $\sigma^{-1}(B')$ be the inverse image of B' (i.e. the induced bundle from B' by σ). On the other hand, denote with T_x the tangential tensor bundle of rank n over $\sigma^{-1}(x)$ for each $x \in X'$. Then $T = \bigcup_{x \in X'} T_x$ constitutes a sub-bundle of the tangential tensor bundle of rank n over X. Accordingly, an analytic vector bundle B over X is defined by $B = \operatorname{Hom}(T, \sigma^{-1}(B'))$.

Let moreover, $S \frown \sigma^{-1}(x)$ be compact for every $x \in X'$, and satisfy a suitable additional condition. Then integrating in a suitably generalized sense any analytic *l*-distribution *g* of type **B** over *S*, *l* being an integer $\ge n$, we have

⁵⁾ The summation symbol of the right-hand side signifies the sum running over all distinct oriented m-simplexes $(\alpha_0, \dots, \alpha_n)$ of N such that at least n-1 elements of $\{\alpha_0, \dots, \alpha_n\}$ are in N'. Note that the number of non-vanishing terms is finite.

M. SATO

(12)
$$\int \cdots \int _{n-\text{tuple}} s \sim \sigma^{-1}(x) g = g'(x)$$

where the value g' of the integral is an analytic (l-n)-distribution of type **B'** over S'.

If another open analytic mapping $\sigma':(X', X'-S') \rightarrow (X'', X''-S'')$ and the corresponding integration: $g' \rightarrow g''$ are given, then we get the integration: $g \rightarrow g''$ corresponding to the mapping $\sigma'\sigma:(X, X-S) \rightarrow (X'', X''-S'')$ (the Fubini theorem).

Hyperfunctions. Now take $X \in \mathfrak{L}(\mathbb{C}^m)$ and $S = X \frown \mathbb{R}^m$. Then we have

Proposition 3. Analytic distributions of degree $n \neq m$ of any type **B** other than 0 over S do not exist.

Therefore we need only consider *m*-distributions on such $S \in \mathfrak{L}(\mathbb{R}^m)$. We call these *m*-distributions on *S* the *hyperfunctions of m variables*. In utilizing the fact that any *m*-dimensional real analytic manifold M^m is locally analytically isomorphic with some $S \in \mathfrak{L}(\mathbb{R}^m)$, we can extend this notion of hyperfunctions of *m* variables to the case where the underlying manifold is M^m instead of *S*. We shall develop the theory of these hyperfunctions in a forthcoming note.

The author wishes to express his thanks to Professor Iyanaga for his encouragement during the preparation of this work.

References

- M. Sato: On a generalization of the concept of functions, Proc. Japan Acad., 34, no. 3, 126-130 (1958).
- [2] M. Sato: Chôkansû-no-riron (Theory of hyperfunctions), Sûgaku, 10, no. 1, 1-27 (1958).
- [3] H. Cartan et al.: Séminaire de topologie algébrique, École Normale Supérieure (1950-1951).