6. Convergence Concepts in Semi-ordered Linear Spaces. I

By Hidegorô NAKANO and Masahumi SASAKI (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1959)

Concerning semi-ordered linear spaces, L. Kantorovitch [1] gave originally two different concepts of convergence, that is, order convergence and star convergence. One of the authors introduced two other concepts, that is, dilatator convergence in [2] and individual convergence in [3], which are essentially equivalent to each other. Combining these concepts, we also obtain star-individual convergence in [4]. In this paper we want to discuss these concepts of convergence and their combinations more systematically. In the sequel we will use the terminologies and notations in the book [4].

Let R be a continuous semi-ordered linear space. We consider the order convergence basic, that is, for a sequence $a_{\nu} \in R$ ($\nu = 0, 1, 2, \cdots$), $a_0 = \lim_{\nu \to \infty} a_{\nu}$ means

$$a_0 = \bigcap_{\nu=1}^{\infty} \bigcup_{\mu \ge \nu} a_{\mu} = \bigcup_{\nu=1}^{\infty} \bigcap_{\mu \ge \nu} a_{\mu}.$$

In the sequel we denote by $\{a_{\nu}\}_{\nu}$ an arbitrary sequence $a_{\nu} \in R$ ($\nu = 0, 1, 2, \cdots$) and $\{a_{\nu}\}_{\nu \ge 1}$ means a_{ν} ($\nu = 1, 2, \cdots$). A mapping \mathfrak{a} of all sequences $\{a_{\nu}\}_{\nu}$ to sequences $\{a_{\nu}^{\mathfrak{a}}\}_{\nu}$ is called an *operator*, if

1) $a_0 = \lim_{\nu \to \infty} a_{\nu} \text{ implies } a_0^{\alpha} = \lim_{\nu \to \infty} a_{\nu}^{\alpha},$

2) $\{a_{\nu}^{a}\}_{\nu \geq 1}$ depends only upon $\{a_{\nu}\}_{\nu \geq 1}$

that is, $a_{\nu}=b_{\nu}$ ($\nu=1, 2, \cdots$) implies $a_{\nu}^{a}=b_{\nu}^{a}$ ($\nu=1, 2, \cdots$). An operator a is said to be *linear* if

 $(\alpha a_{\nu}+\beta b_{\nu})^{a}=\alpha a_{\nu}^{a}+\beta b_{\nu}^{a} \qquad (\nu=0,\,1,\,2,\cdots).$

For two operators a, b, putting

$$a^{\mathfrak{a}\mathfrak{b}}_{\nu} = (a^{\mathfrak{a}}_{\nu})^{\mathfrak{b}} \quad (\nu = 0, 1, 2, \cdots),$$

we also obtain an operator ab, which will be called the *product* of a and b. With this definition, we have obviously

$$(ab)c = a(bc).$$

a is said to commute b, if ab=ba.

A set \mathfrak{A} of operators is called a *process*, if for any two sequences $\{a_{\nu}\}_{\nu}, \{b_{\nu}\}_{\nu}$ with $a_{0} \neq b_{0}$ we can find $\mathfrak{a} \in \mathfrak{A}$ for which $a_{0}^{\mathfrak{a}} \neq b_{0}^{\mathfrak{a}}$. A set A of processes is called a *modificator*, if for any $\mathfrak{A}_{1}, \mathfrak{A}_{2} \in A$ we can find $\mathfrak{A} \in A$ for which $\mathfrak{A} \subset \mathfrak{A}_{1}, \mathfrak{A}_{2}$. For two modificators A, B we write $A \geq B$, if for any $\mathfrak{A} \in A$ we can find $\mathfrak{B} \in B$ for which $\mathfrak{A} \supset \mathfrak{B}$. If $A \geq B$ and $B \geq A$ at the same time, we write A = B.

Let A and B be modificators. For a process $\mathfrak{A} \in A$ and a system of processes $\mathfrak{B}_{\mathfrak{a}} \in B$ ($\mathfrak{a} \in \mathfrak{A}$) we see easily that the set

also is a process, and furthermore that all such processes constitute a modificator, which will be called the *product* of A and B, and denoted by AB. We also see that the system

$$\mathfrak{ae}\mathfrak{A}, \mathfrak{be}\mathfrak{B} \qquad (\mathfrak{Ae}A, \mathfrak{Be}B)$$

is a modificator, which will be called the *direct product* of A and B and denoted by $A \circ B$.

For modificators A, B, C we have obviously by definition

(1) $(AB)C = A(BC), \quad (A \circ B) \circ C = A \circ (B \circ C),$

 $A \circ B \ge AB$,

(3) $A \ge B$ implies $AC \ge BC$, $CA \ge CB$, $A \circ C \ge B \circ C$, $C \circ A \ge C \circ B$,

 $(4) \qquad (AB) \circ C \ge A(B \circ C), \quad A \circ (BC) \ge (A \circ B)C.$

For a modificator A, a sequence $\{a_{\nu}\}_{\nu\geq 1}$ is said to be A-convergent, if we can find $a_0 \in R$ and $\mathfrak{A} \in A$ such that

$$a_0^{\mathfrak{a}} = \lim a_{\mathfrak{p}}^{\mathfrak{a}}$$
 for all $\mathfrak{a} \in \mathfrak{A}$.

In this case we see easily that such a_0 is determined uniquely. Thus such a_0 is called the *A*-limit of $\{a_{\nu}\}_{\nu\geq 1}$ and we write

$$a_0 = A - \lim a_{\nu}.$$

With this definition we have obviously

Theorem 1. For two modifications A, B we have

$$a_0 = AB-\lim_{\nu \to \infty} a_{\nu}$$

if and only if we can find $\mathfrak{A} \in A$ such that $a_0^{\mathfrak{a}} = B - \lim_{v \to \infty} a_v^{\mathfrak{a}}$ for all $\mathfrak{a} \in \mathfrak{A}$.

For two modificators A, B, we write A > B if

 $a_0 = A - \lim a_\nu$ implies $a_0 = B - \lim a_\nu$;

and A is said to be equivalent to B and denoted by $A \sim B$, if $A \succ B$ and $B \succ A$ at the same time. With this definition we see easily (5) $A \ge B$ implies $A \succ B$, (6) $A \succ B$ implies $CA \succ CB$, $C \circ A \succ C \circ B$, (7) $A \succeq A \circ B \succ AB$. A modificator A is said to commute an operator a, if $a_0 = A - \lim a_{\nu}$ implies $a_0^{\alpha} = A - \lim a_{\nu}^{\alpha}$.

With this definition we conclude immediately by Theorem 1

Theorem 2. For two modificators A, B, if every operator of A commutes an operator c and B commutes c, then AB commutes c.

As the simplest operator we have the *identity* 1, that is, $a_{\nu}^{1}=a_{\nu}$ ($\nu=0, 1, 2, \cdots$). The modificator, which consists of only one process {1}, is denoted by *O*. *O*-convergence coincides obviously with the order convergence, that is, $a_{0}=O-\lim_{\nu\to\infty}a_{\nu}$ if and only if $a_{0}=\lim_{\nu\to\infty}a_{\nu}$. Furthermore we have for every modificator *A*

 $0 \succ A$, $OA = AO = O \circ A = A \circ O = A$.

(2)

No. 1]

For every subsequence $\{\mu_{\nu}\}_{\nu\geq 1}$ of $\{1, 2, \cdots\}$, putting $a_{0}^{\$} = a_{0}, \quad a_{\nu}^{\$} = a_{\mu\nu} \quad (\nu = 1, 2, \cdots),$

we obtain an operator \hat{s} , which will be called a *sub. operator* and denoted by $\hat{s}\{\mu_{\nu}\}$, if we need to indicate $\{\mu_{\nu}\}$. For two sub. operators \hat{s}_{1}, \hat{s}_{2} , the product $\hat{s}_{1}\hat{s}_{2}$ also is a sub. operator. We write $\hat{s}\{\mu_{\nu}\} \geq \hat{s}\{\rho_{\nu}\}$ if $\{\rho_{\nu}\}$ is a subsequence of $\{\mu_{\nu}\}$.

We denote by S the modificator, which consists of all such processes \mathfrak{S} of sub. operators that

1) $\mathfrak{s} \leq \mathfrak{s}_0 \in \mathfrak{S}$ implies $\mathfrak{s} \in \mathfrak{S}$,

2) for any sub. operator \mathfrak{s} we can find $\mathfrak{s}_0 \in \mathfrak{S}$ for which $\mathfrak{s} \geq \mathfrak{s}_0$. With this definition we have obviously

$$(8) SS = S \circ S = S.$$

For every projector [p], putting $a_{\nu}^{l} = [p]a_{\nu}$ ($\nu = 0, 1, 2, \cdots$), we obtain an operator \mathfrak{l} , which will be called a *loc. operator* and denoted by $\mathfrak{l}[p]$, if we need to indicate [p]. We write $\mathfrak{l}[p] \ge \mathfrak{l}[q]$, if $[p] \ge [q]$. We have obviously $\mathfrak{l}[p]\mathfrak{l}[q] = \mathfrak{l}[p][q]$ and $\mathfrak{l}_{\mathfrak{S}} = \mathfrak{S}\mathfrak{l}$ for every loc. operator \mathfrak{l} and sub. operator \mathfrak{S} .

We denote by L the modificator which consists of all such processes \mathfrak{L} of loc. operators that

1) $l \leq l_0 \in \mathfrak{L}$ implies $l \in \mathfrak{L}$,

2) for any loc. operator l we can find $l_0 \in \Omega$ for which $l \ge l_0$.

With this definition we have obviously

 $LL = L \circ L = L.$

Since $\mathfrak{sl} = \mathfrak{ls}$ for every loc. operator \mathfrak{l} and sub. operator \mathfrak{s} , we have (10) $L \circ S = S \circ L$.

Lemma 1. Let A be a modificator, which commutes every loc. operator. In order that

$$a_0 = LA\text{-lim } a_\nu,$$

it is necessary and sufficient that we can find a system of projectors $[p_{\lambda}]$ ($\lambda \in \Lambda$) such that

$$\bigcup_{\lambda \in A} [p_{\lambda}] \bigcup_{\nu=1}^{\omega} [a_{\nu}] = \bigcup_{\nu=1}^{\omega} [a_{\nu}]$$
$$[p_{\lambda}]a_{0} = A - \lim_{\nu \to \infty} [p_{\lambda}]a_{\nu} \quad for \ all \ \lambda \in A.$$

Proof. We need only to prove the sufficiency. For such a system of projectors $[p_{\lambda}]$ ($\lambda \in \Lambda$), denoting by \mathfrak{L} the set of all such $\mathfrak{l}[p]$ that $[p] \leq [p_{\lambda}]$ for some $\lambda \in \Lambda$ or $[p][p_{\lambda}]=0$ for all $\lambda \in \Lambda$, we see easily that $\mathfrak{L} \in L$, and

$$a_0^{\mathrm{I}} = A - \lim_{\nu \to \infty} a_{\nu}^{\mathrm{I}}$$
 for all $\mathfrak{l} \in \mathfrak{L}$,

because A commutes \mathfrak{l} by assumption.

For two elements $p \ge 0 \ge q$ in R, putting

$$a_{\nu}^{i} = (a_{\nu} \frown p) \lor q \quad (\nu = 0, 1, 2, \cdots),$$

we obtain an operator i, which will be called an ind. operator and

denoted by i(p,q) if we need to indicate p,q. We write $i(p,q) \ge i(r,s)$ if $p \ge r \ge s \ge q$. We have obviously

$$i(p,q)i(r,s)=i(p r, q r)$$

and il = li, is = si for every loc. operator l and sub. operator s.

We denote by I the modificator which consists of only one process of all ind. operators. With this definition we have obviously (11) $II = I \circ I = I.$

From the proof of Theorem 1.1 in [3], we conclude easily (12) $I \sim L$.

Lemma 2. In order that $a_0 = I - \lim_{\nu \to \infty} a_{\nu}$, it is necessary and sufficient that we can find a sequence $0 \leq p_1 \leq p_2 \leq \cdots$ such that

$$(a_0 \frown p_\mu) \smile (-p_\mu) = \lim_{\nu \to \infty} (a_\nu \frown p_\mu) \smile (-p_\mu) \quad for \ all \ \mu = 1, 2, \cdots,$$

 $\lim_{\nu \to \infty} (x \frown p_\mu) \smile (-p_\mu) = x \quad for \ all \ x \in [a_1, a_2, \cdots]R.$

Proof. We need only to prove the sufficiency. Putting $i_{\mu} = i(p_{\mu}, -p_{\mu})$ ($\mu = 1, 2, \cdots$), we obtain by assumption for any ind. operator i $(\varlimsup_{\nu \to \infty} a_{\nu}^{i})^{i_{\mu}} = \varlimsup_{\nu \to \infty} a_{\nu}^{i_{\mu}} = (\varlimsup_{\nu \to \infty} a_{\nu}^{i_{\mu}})^{i} = a_{0}^{i_{\mu}i} = (a_{0}^{i})^{i_{\mu}}$

Thus, making $\mu \to \infty$, we obtain $\varlimsup_{\nu \to \infty} a^i_{\nu} = a^i_0$. We conclude similarly also that $\underset{\nu \to \infty}{\lim} a^i_{\nu} = a^i_0$. Therefore $a_0 = I - \underset{\nu \to \infty}{\lim} a_{\nu}$ by definition.

As il = li and I consists of only one process, we have by definition (13) $I \circ L = L \circ I = LI.$

Recalling (12), we obtain by (9), (11)

$$(14) LI \sim IL \sim I$$

As $i\mathfrak{g}=\mathfrak{g}i$, we have

 $I \circ S = S \circ I = SI.$

As $I \circ S \ge IS$ by (2), we have hence SI > IS by (5). Now we shall prove (16) $SI \sim IS$.

We suppose $a_0 = IS$ -lim a_{ν} . Putting $p_{\mu} = \mu \sum_{\nu=1}^{\mu} |a_{\nu}|$ ($\mu = 1, 2, \cdots$), we see easily that the sequence $0 \le p_1 \le p_2 \le \cdots$ satisfies the condition of Lemma 2. For any sub. operator \hat{s} , we can find by assumption a sequence of operators $\hat{s} \ge \hat{s}_1 \ge \hat{s}_2 \ge \cdots$ such that

$$(a_0 \frown p_\mu) \smile (-p_\mu) = \lim_{\nu \to \infty} (a_{\nu}^{\mathfrak{s}_\mu} \frown p_\mu) \smile (-p_\mu) \quad (\mu = 1, 2, \cdots).$$

Then we can find by the diagonal method a sub. operator $\mathfrak{s}_0 {\leq} \mathfrak{s}$ such that

$$(a_0 \frown p_\mu) \smile (-p_\mu) = \lim_{\nu \to \infty} (a_\nu^{g_0} \frown p_\mu) \smile (-p_\mu) \quad (\mu = 1, 2, \cdots).$$

Thus we have $a_0 = SI$ -lim a_ν , and therefore IS > SI by definition.

A modificator is said to be regular, if it commutes every sub., loc. and ind. operators. The modificator O is obviously regular.

Lemma 3. If a modificator A is regular, then all SA, LA and IA are regular, and $S \circ A \prec A$, $L \circ A \prec A$, $I \circ A \prec A$.

Proof. By virtue of Theorem 2, both LA and IA are regular. To prove that SA is regular, we need only to show that SA commutes every sub. operator. We suppose that $a_0 = SA$ -lim a_{ν} . Then we can find by Theorem 1 a process $\mathfrak{S} \in S$ such that

 $a_0^{\mathfrak{g}} = A - \lim_{\nu o \infty} a_{\nu}^{\mathfrak{g}} \quad ext{ for all } \mathfrak{g} \in \mathfrak{S}.$

For any sub. operator \mathfrak{s}_0 , we obtain hence

$$a_0^{\mathfrak{s}_0\mathfrak{s}} = A - \lim_{\mu \to \infty} a_{\mu}^{\mathfrak{s}_0\mathfrak{s}} \quad ext{ for } \mathfrak{s}_0\mathfrak{s} \in \mathfrak{S}.$$

Putting $\mathfrak{S}_0 = \{ \mathfrak{s}: \mathfrak{s}_0 \mathfrak{s} \in \mathfrak{S} \}$, we see easily that $\mathfrak{S}_0 \mathfrak{s} \in S$. Thus we have $a_0^{\mathfrak{s}_0} = SA$ -lim $a_{\mathfrak{s}_0}^{\mathfrak{s}_0}$. Therefore SA commutes every sub. operator. If A is regular, then we have obviously $S \circ A \prec A$, $L \circ A \prec A$, $I \circ A \prec A$ by definition.

Lemma 4. If R is super-universally continuous and a modificator A commutes every loc. operator, then we have

$$(L \circ S)A \sim LSA \succ SLA.$$

Proof. We suppose that $a_0 = LSA-\lim_{\nu \to \infty} a_{\nu}$. As R is superuniversally continuous by assumption, we can find $[p_{\mu}]$ $(\mu=1, 2, \cdots)$ such that

$$[p_{\mu}]a_{0}=SA-\lim_{\nu\to\infty}[p_{\mu}]a_{\nu} \ (\mu=1,2,\cdots), \quad \bigcup_{\mu=1}^{\infty}[p_{\mu}]\geq \bigcup_{\nu=1}^{\infty}[a_{\nu}].$$

Then we can find $\mathfrak{S}_{\mu} \in S$ by definition such that

 $\llbracket p_{\mu}
floor a_{0}^{\mathfrak{g}} = A - \lim_{\nu o \infty} \llbracket p_{\mu}
floor a_{\nu}^{\mathfrak{g}}$ for all $\mathfrak{s} \in \mathfrak{S}_{\mu}$ ($\mu = 1, 2, \cdots$).

Denoting by \mathfrak{S} the intersection of all \mathfrak{S}_{μ} ($\mu=1, 2, \cdots$), we see easily by the diagonal method that $\mathfrak{S} \in S$. Denoting by \mathfrak{L} the set of all $\mathfrak{l}[p]$ such that $[p] \leq [p_{\mu}]$ for some $\mu=1, 2, \cdots$ or $[p][p_{\mu}]=0$ for all $\mu=1$, $2, \cdots$, we see easily that $\mathfrak{L} \in L$, because A commutes every loc. operator by assumption. Thus we have

 $a_0^{\mathfrak{l}\mathfrak{s}} = A$ -lim $a_{\nu}^{\mathfrak{l}\mathfrak{s}}$ for all $\mathfrak{l}\in\mathfrak{L}$, $\mathfrak{s}\in\mathfrak{S}$,

and hence $a_0 = (L \circ S)A$ -lim a_{ν} . Therefore we have $LSA > (L \circ S)A$. On the other hand we have $(L \circ S)A > LSA$ by (2), (3). Consequently $(L \circ S)A \sim LSA$. As $L \circ S = S \circ L \geq SL$, we obtain hence LSA > SLA.

A modificator is said to be *standard*, if it is composed only of O, S, L, I by the product and the direct product.

Theorem 3. If R is super-universally continuous, then every standard modificator is equivalent to one of O, S, L, LS, SL.

Proof. We need only to show $SLS \sim LSL \sim ILS \sim ISL \sim SL$. As $LS \succ SL$ by Lemma 4, we obtain by (6), (8), (7): $SLS \succ SSL = SL \succ SLS$, and by (9), Lemma 3: $LSL \succ SLL = SL \succ LSL$. As $L \sim I$ by (12), we have by (6), (16), (11): $ISL \sim ISI \sim IIS = IS \sim SI \sim SL$. As $IL \leq LI$ by

(13), (2), we have by (3), (16), (12): $ILS \leq LIS \sim LSI \sim LSL \sim SL$. On the other hand we have ILS > ISL by Lemma 4 and (6), and $ISL \sim SL$, as proved just above.

Theorem 4. If R is super-universally continuous and complete,^{*)} then every standard modificator is equivalent to one of O and S.

Proof. If R is super-universally continuous and complete, then we see easily $I \sim L \sim O$. Thus we obtain by Lemmas 3 and 4

$$S > LS > SL \sim SO = S.$$

Therefore we conclude our assertion from Theorem 3.

References

- L. Kantorovitch: Lineare halbgeordnete Räume, Math. Sbornik, 2 (44), 121-168 (1937).
- [2] H. Nakano: Teilweise geordnete Algebra, Jap. Jour. Math., 17, 485-511 (1941).
- [3] —: Ergodic theorems in semi-ordered linear spaces, Ann. Math., 49, 538-556 (1948).
- [4] ——: Modulared Semi-ordered Linear Spaces, Tokyo (1950).
- [5] ——: Modern Spectral Theory, Tokyo (1950).