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6. Convergence Concepts in Semi.ordered Linear Spaces. I

By Hidegor6 NAKANO and Masahumi SASAKI
(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1959)

Concerning semi-ordered linear spaces, L. Kantorovitch 1 gave
originally two different concepts of convergence, that is, order con-
vergence and star convergence. One of the authors introduced two
other concepts, that is, dilatator convergence in 2 and individual
convergence in 3, which are essentially equivalent to each other.
Combining these concepts, we also obtain star-individual convergence
in 4. In this paper we want to discuss these concepts of convergence
and their combinations more systematically. In the sequel we will use
the terminologies and notations in the book 4.

Let R be a continuous semi-ordered linear space. We consider
the order convergence basic, that is, for a sequence aeR (,----0, 1, 2,
..), a0--1im a means

a0- n Ua- U
=i ,u =I

_
In the sequel we denote by {a.}. an arbitrary sequence a.6R (u--O, 1,
2,...) and {a},_l means a. (u-l, 2,...). A mapping a of all sequences
{a,}. to sequences {a} is called an operator, if
1) a0-1im a. implies a=lim a,
2) {a}al depends only upon {a,}_
that is, a.--b. (,- 1, 2,...) implies a--b (,-- 1, 2,...). An operator
a is said to be linear if

(aa+b)--aa+b (u--O, 1, 2,...).
For two operators , 5, putting

a (a) (u--0, 1, 2,...),
we also obtain an operator
and 5. With this definition, we have obviously

(a)c a(c).
a is said to commute

A set of operators is called a process, if for any two sequences
{a}, {b,} with ao#bo we can find a e0/ for which a#b. A set A
of processes is called a modificator, if for any 9X, 9A we can find
9A for which ;9, 9/.. For two modificators A, B we write A>__B,
if for any 9XCA we can find eB for which 9/. If A>B and
B>A at the same time, we write A=B.

Let A and B be modificators. For a process 9eA and a system
of processes aB (a9) we see easily that the set

{: a% }
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also is a process, and furthermore that all such processes constitute
a modificator, which will be called the product of A and B, and
denoted by AB. We also see that the system

{: e% } (A, B)
is a modificator, which will be called the direct product of A and B
and denoted by AoB.

For modificators A, B, C we have obviously by definition
(1) (AB)C=A(BC), (AoB)oC=Ao(BoC),
( 2 AoBAB,
(3) AB implies ACBC, CACB, AoCBoC, CoACoB,
(4) (AB)oCA(BoC), Ao(BC)(AoB)C.

For a modificator A, a sequence {a},_ is said to be A-convergent,
if we can find a0 e R and t e A such that

ao lim a for all a e.
In this case we see easily that such a0 is determined uniquely. Thus
such a0 is called the A-limit of {a,} and we write

ao A-lim a,.

With this definition we have obviously
Theorem 1. For two modifications A, B we have

a0 AB-lim a

if and only if we can find IA such that
a B-lim a for all e I.

For two modificators A, B, we write A-B if

a0--A-lim a implies a0--B-lim a;

and A is said to be equivalent to B and denoted by A-.B, if A h-B
and B h-A at the same time. With this definition we see easily
( 5 ) A_B implies A N B,
(6) A-B implies CA}-CB, CoA-CoB,
(7) A-AoB-AB.

A modificator A is said to commute an operator a, if

a0--A-lim a, implies ao=A-lim a.
With this definition we conclude immediately by Theorem 1
Theorem 2. For two modificators A, B, if every operator of A

commutes an operator and B commutes c, then AB commutes .
As the simplest operator we have the identity 1, that is,

(--0, 1, 2,...). The modificator, which consists of only one process

{1}, is denoted by O. 0-convergence coincides obviously with the order
convergence, that is, ao-O-lim a if and only if a0--1im a. Further-

more we have for every modificator A
O-A, OA--AO=OoA=AoO--A.
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For every subsequence {ff}a of {1, 2,...}, putting

ao-a0, a--ao (,-- 1, 2,... ),
we obtain an operator , which will be called a sub. operator and
denoted by {ff}, if we need to indicate {ff]. For two sub. operators, , the product also is a sub. operator. We write
if [p} is a subsequence of {ff}.

We denote by S the modificator, which consists of all such proc-
esses of sub. operators that
1) 0 implies e(R),
2) for any sub. operator we can find 0 for which 0.
With this definition we have obviously
(s) ss-sos=s.
For every projector [p, putting a--pa (=0, 1, 2,...), we obtain
an operator i, which will be called a loc. operator and denoted by i[p,
if we need to indicate p. We write ipi[qJ, if pq. We
have obviously ipiq]-ipq and i--i for every loc. operator
and sub. operator .

We denote by L the modificator which consists of all such proc-
esses of loc. operators that
1) [0e implies
2) for any loc. operator we can find i0e9 for which Iio.
With this definition we have obviously
(9) LL=ioL--i.
Since gI=i for every loc. operator and sub. operator , we have
(10) LoS- SoL.

Lemma 1. Let A be a modificator, which commutes every loc.
operator. In order that

a0 LA-lim a,

it is necessary and sucient that we can find a system of projectors
[p (2 A) such that

A I -I

[p]ao-- A-lim [p]a, for all

Proof. We need only to prove the suffieieney. For such a system
of projeetors [p] (2 s A), denoting by the set of all such [[p] that
[p]__< [p] for some A or [p] [p,] =0 for all 2 A, we see easily that

L, and
ao A-lim a for all e 9,

because A commutes by assumption.
For two elements pOq in R, putting

a--(ap)q (,--0, 1, 2,. .),
we obtain an operator i, which will be called an ind. operator and
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denoted by i(p, q) if we need to indicate p, q. We write i(p, q)i(r, s)
if p>=r>__s>_q. We have obviously

i(p, q)i(r, s)--i(pr, qs)
and ii--ii, i--i for every loc. operator

We denote by I the modificator which consists of only one process
of all ind. operators. With this definition we have obviously

(11) H--o--L
From the proof of Theorem 1.1 in [3, we conclude easily

(12) IL.
Lemma 2. In order that a0--Plim a, it is necessary and suf-

ficien that we can find a sequence Oppz... such that

(a0p,) (-- p,)-- lim (a p) (--p) for all /-- 1, 2,...,

lim (xp,)(--p,)--x for all x [a, a,. .R.
Proof. We need only to prove the sufficiency. Putting i,--i(p,,

--p,) (/,=1, 2,...), we obtain by assumption for any ind. operator

(lim a)--lim a)-- (lim a))=ai--(a)

Thus, making g, we obtain lira aL-a. We conclude similarly also

that lim a-a. Therefore a0--Glim a by definition.

As iI-l and I consists of only one process, we have by definition

(13) IoL- LoI-- LL
Recalling (12), we obtain by (9), (11)
(14) LI IL I.
As i--i, we have
(15)  os- so - si.
As IoSIS by (2), we have hence SI IS by (5). Now we shall prove

(16)
We suppose a0-IS-lim a. Putting p,-Z [a, (Z= 1, 2,...), we

see easily that the sequence Opp2... satisfies the condition
of Lemma 2. For any sub. operator , we can find by assumption a
sequence of operators ... such that

(a0p,)

Then we can find by the diagonal method a sub. operator 0 such
that

(a0p,)(--p,)--lim (aop,)(--p,) (--1, 2,...).

Thus we have ao-SI-lim a, and therefore IS SI by definition.

A modificator is said to be regular, if it commutes every sub.,
loc. and ind. operators. The modificator O is obviously regular.
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Lemma 3. If a modificator A is regular, then all SA, LA and
IA are regular, and SoA -4 A, LoA -4 A, IoA -4 A.

Proof. By virtue of Theorem 2, both LA and IA are regular.
To prove that SA is regular, we need only to show that SA commutes
every sub. operator. We suppose that ao--SA-lim a. Then we can

find by Theorem 1 a process (R)eS Such that

ao A-lim a for all (R).

For any sub. operator o, we obtain hence
ao A-lim a for o e (R).

Putting (R)o-{: oe(R)}, we see easily that (R)oeS. Thus we have
ao- SA-lim ao. Therefore SA commutes every sub. operator. If

A is regular, then we have obviously SoA- A, LoA- A, IoA-A by
definition.

Lemma 4. If R is super-universally continuous and a modifi-
cator A commues every loc. operator, then we have

(LoS)A LSA - SLA.
Proof. We suppose that ao- LSA-lima. As R is super-

universally continuous by assumption, we can find p (fl, 2,...)
such that

Ep,ao-SA-lim Ep,a. (/=1, 2,...), U Ep,3 > U Ea,.
-->.oo =i =i

Then we can find (R)S by definition such that
[p,ao--A-lim [p,a for all e(R), ([--1, 2,...).

Denoting by (R) the intersection of all (R), (t--l, 2,...), we see easily
by the diagonal method that (R)S. Denoting by 9 the set of all
such that [p[p, for some [--1, 2,... or [p [p,--0 for all t--l,
2,..., we see easily that eL, because A commutes every loc. operator
by assumption. Thus we have

a0 A-lim a for all e, e (R),

and hence ao (LoS)A-lim a.. Therefore we have LSA }- (LoS)A.
On the other hand we have (LoS)A}-LSA by (2), (3). Consequently
(LoS)A..LSA. As LoS--SoLSL, we obtain hence LSA}-SLA.

A modificator is said to be standard, if it is composed only of
O, S, L, I by the product and the direct product.

Theorem 3. If R is super-universally continuous, then every
standard modificator is equivalent to one of O, S, L, LS, SL.

Proof. We need only to show SLS..LSL..ILS.ISL..SL. As
LS-SL by Lemma 4, we obtain by (6), (8), (7): SLS-SSL--SL }-SLS,
and by (9), Lemma 3: LSL-SLL--SL}-LSL. As L-.I by (12), we
have by (6), (16), (11): ISL.-..ISI...IIS--IS...SISL. As ILLI by
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(13), (2), we have by (3), (16), (12): ILSLISLSI,LSL..SL. On
the other hand we have ILS-ISL by Lemma 4 and (6), and ISLSL,
as proved just above.

Theorem 4. If R is super-universally continuous and complete,*
then every standard modificator is equivalent to one of 0 and S.

Proof. if R is super-universally continuous and complete, then
we see easily I.LO. Thus we obtain by Lemmas 3 and 4

SLS- SL,.SO S.
Therefore we conclude our assertion from Theorem 3.
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*) A semi-ordered linear space is said to be complete if every orthogonal sequence
of elements is bounded (cf. [5]).


