6. Convergence Concepts in Semi-ordered Linear Spaces. I

By Hidegorô Nakano and Masahumi Sasaki
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1959)

Concerning semi-ordered linear spaces, L. Kantorovitch [1] gave originally two different concepts of convergence, that is, order convergence and star convergence. One of the authors introduced two other concepts, that is, dilatator convergence in [2] and individual convergence in [3], which are essentially equivalent to each other. Combining these concepts, we also obtain star-individual convergence in [4]. In this paper we want to discuss these concepts of convergence and their combinations more systematically. In the sequel we will use the terminologies and notations in the book [4].

Let R be a continuous semi-ordered linear space. We consider the order convergence basic, that is, for a sequence $a_{\nu} \in R(\nu=0,1,2$, $\cdots), a_{0}=\lim _{\nu \rightarrow \infty} a_{\nu}$ means

$$
a_{0}=\bigcap_{\nu=1}^{\infty} \bigcup_{\mu \geq \nu} a_{\mu}=\bigcup_{\nu=1}^{\infty} \bigcap_{\mu \geq \nu} a_{\mu} .
$$

In the sequel we denote by $\left\{a_{\nu}\right\}_{\nu}$ an arbitrary sequence $a_{\nu} \in R \quad(\nu=0,1$, $2, \cdots$) and $\left\{a_{\nu}\right\}_{\nu \geqq 1}$ means $a_{\nu}(\nu=1,2, \cdots)$. A mapping \mathfrak{a} of all sequences $\left\{a_{\nu}\right\}_{\nu}$ to sequences $\left\{a_{\nu}^{a}\right\}_{\nu}$ is called an operator, if

1) $\quad a_{0}=\lim _{\nu \rightarrow \infty} a_{\nu}$ implies $a_{0}^{a}=\lim _{\nu \rightarrow \infty} a_{\nu}^{a}$,
2)

$$
\left\{a_{\nu}^{a}\right\}_{\nu \geqq 1} \text { depends only upon }\left\{a_{\nu}\right\}_{\nu \geqq 1}
$$

that is, $a_{\nu}=b_{\nu}(\nu=1,2, \cdots)$ implies $a_{\nu}^{a}=b_{\nu}^{a} \quad(\nu=1,2, \cdots)$. An operator \mathfrak{a} is said to be linear if

$$
\left(\alpha a_{\nu}+\beta b_{\nu}\right)^{a}=\alpha a_{\nu}^{a}+\beta b_{\nu}^{a} \quad(\nu=0,1,2, \cdots) .
$$

For two operators $\mathfrak{a}, \mathfrak{b}$, putting

$$
a_{\nu}^{\mathfrak{a b}}=\left(a_{\imath}^{\mathfrak{a}}\right)^{\mathfrak{b}} \quad(\nu=0,1,2, \cdots),
$$

we also obtain an operator $\mathfrak{a b}$, which will be called the product of \mathfrak{a} and \mathfrak{b}. With this definition, we have obviously

$$
(\mathfrak{a b}) \mathfrak{c}=\mathfrak{a}(\mathfrak{b c})
$$

\mathfrak{a} is said to commute \mathfrak{b}, if $\mathfrak{a b}=\mathfrak{b a}$.
A set \mathfrak{H} of operators is called a process, if for any two sequences $\left\{a_{\nu}\right\}_{\nu},\left\{b_{\nu}\right\}_{\nu}$ with $a_{0} \neq b_{0}$ we can find $\mathfrak{a} \in \mathfrak{\Re}$ for which $a_{0}^{\mathfrak{a}} \neq b_{0}^{\mathfrak{a}}$. A set A of processes is called a modificator, if for any $\mathfrak{N}_{1}, \mathfrak{N}_{2} \in A$ we can find $\mathfrak{U} \in A$ for which $\mathfrak{H} \subset \mathfrak{H}_{1}, \mathfrak{H}_{2}$. For two modificators A, B we write $A \geqq B$, if for any $\mathfrak{H} \in A$ we can find $\mathfrak{B \in B}$ for which $\mathfrak{H} \supset \mathfrak{B}$. If $A \geqq B$ and $B \geqq A$ at the same time, we write $A=B$.

Let A and B be modificators. For a process $\mathfrak{U} \in A$ and a system of processes $\mathfrak{B}_{\mathfrak{a}} \in B(\mathfrak{a} \in \mathfrak{Z})$ we see easily that the set

$$
\left\{\mathfrak{a b}: \quad \mathfrak{a} \in \mathfrak{A}, \quad \mathfrak{b} \in \mathfrak{B}_{\mathfrak{a}}\right\}
$$

also is a process, and furthermore that all such processes constitute a modificator, which will be called the product of A and B, and denoted by $A B$. We also see that the system

$$
\{\mathfrak{a b}: \quad \mathfrak{a} \in \mathfrak{N}, \mathfrak{b} \in \mathfrak{B}\} \quad(\mathfrak{H} \in A, \mathfrak{B} \in B)
$$

is a modificator, which will be called the direct product of A and B and denoted by $A \circ B$.

For modificators A, B, C we have obviously by definition

$$
\begin{equation*}
(A B) C=A(B C), \quad(A \circ B) \circ C=A \circ(B \circ C), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A \circ B \geqq A B \tag{2}
\end{equation*}
$$

(3) $A \geqq B$ implies $A C \geqq B C, C A \geqq C B, A \circ C \geqq B \circ C, C \circ A \geqq C \circ B$,
$(A B) \circ C \geqq A(B \circ C), \quad A \circ(B C) \geqq(A \circ B) C$.
For a modificator A, a sequence $\left\{\alpha_{\nu}\right\}_{\nu \geqq 1}$ is said to be A-convergent, if we can find $a_{0} \in R$ and $\mathfrak{A} \in A$ such that

$$
a_{0}^{\mathfrak{a}}=\lim _{\nu \rightarrow \infty} a_{\nu}^{\mathfrak{a}} \quad \text { for all } \mathfrak{a} \in \mathfrak{N}
$$

In this case we see easily that such a_{0} is determined uniquely. Thus such a_{0} is called the A-limit of $\left\{a_{\nu}\right\}_{\nu \geq 1}$ and we write

$$
a_{0}=A-\lim _{\nu \rightarrow \infty} a_{\nu}
$$

With this definition we have obviously
Theorem 1. For two modifications A, B we have

$$
a_{0}=A B-\lim _{\nu \rightarrow \infty} a_{\nu}
$$

if and only if we can find $\mathfrak{H} \in A$ such that

$$
a_{0}^{\alpha}=B-\lim _{\nu \rightarrow \infty} a_{\nu}^{\mathfrak{a}} \quad \text { for all } \mathfrak{a} \in \mathfrak{Q} .
$$

For two modificators A, B, we write $A \succ B$ if

$$
a_{0}=A-\lim _{\nu \rightarrow \infty} a_{\nu} \quad \text { implies } \quad a_{0}=B-\lim _{\nu \rightarrow \infty} a_{\nu} ;
$$

and A is said to be equivalent to B and denoted by $A \sim B$, if $A \succ B$ and $B \succ A$ at the same time. With this definition we see easily

A modificator A is said to commute an operator \mathfrak{a}, if

$$
a_{0}=A-\lim _{\nu \rightarrow \infty} a_{\nu} \text { implies } a_{0}^{\mathfrak{a}}=A-\lim _{\nu \rightarrow \infty} a_{\nu}^{\mathfrak{a}}
$$

With this definition we conclude immediately by Theorem 1
Theorem 2. For two modificators A, B, if every operator of A commutes an operator \mathfrak{c} and B commutes \mathfrak{c}, then $A B$ commutes \mathfrak{c}.

As the simplest operator we have the identity 1 , that is, $a_{\nu}^{1}=a_{\nu}$ ($\nu=0,1,2, \cdots$). The modificator, which consists of only one process $\{1\}$, is denoted by O. O-convergence coincides obviously with the order convergence, that is, $a_{0}=O-\lim _{\nu \rightarrow \infty} a_{\nu}$ if and only if $a_{0}=\lim _{\nu \rightarrow \infty} a_{\nu .}$. Furthermore we have for every modificator A

$$
O \succ A, \quad O A=A O=O \circ A=A \circ O=A
$$

For every subsequence $\left\{\mu_{\nu}\right\}_{\nu \geqq 1}$ of $\{1,2, \cdots\}$, putting

$$
a_{0}^{\mathfrak{B}}=a_{0}, \quad a_{\nu}^{\mathfrak{s}}=a_{\mu \nu} \quad(\nu=1,2, \cdots),
$$

we obtain an operator \mathfrak{z}, which will be called a sub. operator and denoted by $\mathfrak{z}\left\{\mu_{\nu}\right\}$, if we need to indicate $\left\{\mu_{\nu}\right\}$. For two sub. operators $\mathfrak{ß}_{1}, \mathfrak{F}_{2}$, the product $\mathfrak{弓}_{1} \mathfrak{F}_{2}$ also is a sub. operator. We write $\mathfrak{z}\left\{\mu_{\nu}\right\} \geqq \mathfrak{F}\left\{\rho_{\nu}\right\}$ if $\left\{\rho_{\nu}\right\}$ is a subsequence of $\left\{\mu_{\nu}\right\}$.

We denote by S the modificator, which consists of all such processes \mathbb{S} of sub. operators that

2) for any sub. operator $\mathfrak{\beta}$ we can find $\mathfrak{B}_{0} \in \mathbb{S}$ for which $\mathfrak{\beta} \geq \mathfrak{B}_{0}$. With this definition we have obviously

$$
\begin{equation*}
S S=S \circ S=S \tag{8}
\end{equation*}
$$

For every projector $[p]$, putting $a_{\nu}^{\mathrm{I}}=[p] a_{\nu}(\nu=0,1,2, \cdots)$, we obtain an operator \mathfrak{l}, which will be called a loc. operator and denoted by $\mathfrak{l}[p]$, if we need to indicate $[p]$. We write $\mathfrak{l}[p] \geqq \mathfrak{Y}[q]$, if $[p] \geqq[q]$. We have obviously $\mathfrak{l}[p] \mathfrak{l}[q]=\mathfrak{l}[p][q]$ and $\mathfrak{l}=\mathfrak{h l}$ for every loc. operator \mathfrak{l} and sub. operator $\mathfrak{5}$.

We denote by L the modificator which consists of all such processes \mathfrak{R} of loc. operators that

1) $\mathfrak{l} \leqq \mathfrak{l}_{0} \in \mathfrak{R}$ implies $\mathfrak{l} \in \mathfrak{R}$,
2) for any loc. operator \mathfrak{l} we can find $\mathfrak{r}_{0} \in \mathfrak{R}$ for which $\mathfrak{r} \geqq \mathfrak{l}_{0}$. With this definition we have obviously

$$
\begin{equation*}
L L=L \circ L=L \tag{9}
\end{equation*}
$$

Since $\mathfrak{g l} \mathfrak{l}$ for every loc. operator \mathfrak{l} and sub. operator $\mathfrak{\xi}$, we have

$$
\begin{equation*}
L \circ S=S \circ L \tag{10}
\end{equation*}
$$

Lemma 1. Let A be a modificator, which commutes every loc. operator. In order that

$$
a_{0}=L A-\lim _{\nu \rightarrow \infty} a_{\nu},
$$

it is necessary and sufficient that we can find a system of projectors $\left[p_{\lambda}\right](\lambda \in \Lambda)$ such that

$$
\begin{gathered}
\bigcup_{\lambda \in \Lambda}\left[p_{\lambda}\right] \bigcup_{\nu=1}^{\infty}\left[a_{\nu}\right]=\bigcup_{\nu=1}^{\infty}\left[a_{\nu}\right] \\
{\left[p_{\lambda}\right] a_{0}=A-\lim _{\nu \rightarrow \infty}\left[p_{\lambda}\right] a_{\nu} \quad \text { for all } \lambda \in \Lambda .}
\end{gathered}
$$

Proof. We need only to prove the sufficiency. For such a system of projectors $\left[p_{\lambda}\right](\lambda \in \Lambda)$, denoting by \mathfrak{Z} the set of all such $\mathfrak{r}[p]$ that $[p] \leqq\left[p_{\lambda}\right]$ for some $\lambda \in \Lambda$ or $[p]\left[p_{\lambda}\right]=0$ for all $\lambda \in \Lambda$, we see easily that $\mathfrak{Z} \in L$, and

$$
a_{0}^{\mathfrak{Y}}=A-\lim _{\nu \rightarrow \infty} a_{\nu}^{\mathfrak{Y}} \quad \text { for all } \mathfrak{Y} \in \mathfrak{R},
$$

because A commutes \mathfrak{l} by assumption.
For two elements $p \geqq 0 \geqq q$ in R, putting

$$
a_{\nu}^{\mathfrak{i}}=\left(a_{\nu} \frown p\right) \smile q \quad(\nu=0,1,2, \cdots),
$$

we obtain an operator \mathfrak{i}, which will be called an ind. operator and
denoted by $\mathfrak{i}(p, q)$ if we need to indicate p, q. We write $\mathfrak{i}(p, q) \geqq \mathfrak{i}(r, s)$ if $p \geqq r \geqq s \geqq q$. We have obviously

$$
\mathfrak{i}(p, q) \mathfrak{i}(r, s)=\mathfrak{i}(p \frown r, q \smile s)
$$

and $\mathfrak{i l}=\mathfrak{Y i}$, $\mathfrak{i}=\mathfrak{s i}$ for every loc. operator \mathfrak{l} and sub. operator \mathfrak{j}.
We denote by I the modificator which consists of only one process of all ind. operators. With this definition we have obviously

$$
\begin{equation*}
I I=I \circ I=I . \tag{11}
\end{equation*}
$$

From the proof of Theorem 1.1 in [3], we conclude easily

$$
\begin{equation*}
I \sim L \tag{12}
\end{equation*}
$$

Lemma 2. In order that $a_{0}=I-\lim _{\nu \rightarrow \infty} a_{\nu}$, it is necessary and sufficient that we can find a sequence $0 \leqq p_{1} \leqq p_{2} \leqq \cdots$ such that

$$
\begin{gathered}
\left(a_{0} \frown p_{\mu}\right) \smile\left(-p_{\mu}\right)=\lim _{\nu \rightarrow \infty}\left(a_{\nu} \frown p_{\mu}\right) \smile\left(-p_{\mu}\right) \quad \text { for all } \mu=1,2, \cdots, \\
\lim _{\mu \rightarrow \infty}\left(x \frown p_{\mu}\right) \smile\left(-p_{\mu}\right)=x \quad \text { for all } x \in\left[a_{1}, a_{2}, \cdots\right] R .
\end{gathered}
$$

Proof. We need only to prove the sufficiency. Putting $i_{\mu}=\mathrm{i}\left(p_{\mu}\right.$, $\left.-p_{\mu}\right)(\mu=1,2, \cdots)$, we obtain by assumption for any ind. operator i

Thus, making $\mu \rightarrow \infty$, we obtain $\varlimsup_{\nu \rightarrow \infty} a_{\nu}^{i}=a_{0}^{i}$. We conclude similarly also that $\lim _{\nu \rightarrow \infty} a_{\nu}^{i}=a_{0}^{i}$. Therefore $\alpha_{0}=I-\lim _{\nu \rightarrow \infty} a_{\nu}$ by definition.

As $\mathfrak{i l}=\mathfrak{l i}$ and I consists of only one process, we have by definition

$$
\begin{equation*}
I \circ L=L \circ I=L I . \tag{13}
\end{equation*}
$$

Recalling (12), we obtain by (9), (11)

$$
\begin{equation*}
L I \sim I L \sim I \tag{14}
\end{equation*}
$$

As $\mathfrak{i}=\mathfrak{y i}$, we have

$$
\begin{equation*}
I \circ S=S \circ I=S I \tag{15}
\end{equation*}
$$

As $I \circ S \geqq I S$ by (2), we have hence $S I \succ I S$ by (5). Now we shall prove

$$
\begin{equation*}
S I \sim I S \tag{16}
\end{equation*}
$$

We suppose $a_{0}=I S-\lim _{\nu \rightarrow \infty} a_{\nu}$. Putting $p_{\mu}=\mu \sum_{\nu=1}^{\mu}\left|a_{\nu}\right| \quad(\mu=1,2, \cdots)$, we see easily that the sequence $0 \leqq p_{1} \leqq p_{2} \leqq \cdots$ satisfies the condition of Lemma 2. For any sub. operator \mathfrak{B}, we can find by assumption a sequence of operators $\mathfrak{B} \geqq \mathfrak{\rho}_{1} \geqq \mathfrak{\beta}_{2} \geqq \cdots$ such that

$$
\left(a_{0} \frown p_{\mu}\right) \smile\left(-p_{\mu}\right)=\lim _{\nu \rightarrow \infty}\left(a_{\nu}^{\xi_{\mu}} \frown p_{\mu}\right) \smile\left(-p_{\mu}\right) \quad(\mu=1,2, \cdots) .
$$

Then we can find by the diagonal method a sub. operator $\mathfrak{B}_{0} \leqq \mathfrak{F}$ such that

$$
\left(a_{0} \frown p_{\mu}\right) \smile\left(-p_{\mu}\right)=\lim _{\nu \rightarrow \infty}\left(a_{\nu}^{\beta_{0}} \frown p_{\mu}\right) \smile\left(-p_{\mu}\right) \quad(\mu=1,2, \cdots) .
$$

Thus we have $a_{0}=S I-\lim _{\nu \rightarrow \infty} a_{\nu}$, and therefore $I S \succ S I$ by definition.
A modificator is said to be regular, if it commutes every sub., loc. and ind. operators. The modificator O is obviously regular.

Lemma 3. If a modificator A is regular, then all $S A, L A$ and IA are regular, and $S \circ A \prec A, L \circ A \prec A, I \circ A \prec A$.

Proof. By virtue of Theorem 2, both $L A$ and $I A$ are regular. To prove that $S A$ is regular, we need only to show that $S A$ commutes every sub. operator. We suppose that $a_{0}=S A-\lim _{\nu \rightarrow \infty} a_{\nu}$. Then we can find by Theorem 1 a process $\mathbb{S} \in S$ such that

$$
a_{0}^{\mathfrak{z}}=A-\lim _{\nu \rightarrow \infty} a_{\nu}^{\mathfrak{s}} \quad \text { for all } \mathfrak{\xi \in \mathbb { S } .}
$$

For any sub. operator ξ_{0}, we obtain hence

$$
a_{0}^{\mathfrak{B}_{0}^{\mathfrak{z}}}=A-\lim _{\nu \rightarrow \infty} a_{\nu}^{\mathfrak{z}_{0} \mathfrak{z}} \quad \text { for } \quad \mathfrak{B}_{0} \mathfrak{y} \in \mathbb{S} \text {. }
$$

Putting $\mathbb{S}_{0}=\left\{\mathfrak{s}: \mathfrak{s}_{0} \mathfrak{\xi} \in \mathbb{S}\right\}$, we see easily that $\mathbb{S}_{0} \in S$. Thus we have $a_{0}^{\mathfrak{\beta} 0}=S A$ - $\lim _{\nu \rightarrow \infty} a_{\nu}^{\beta_{\nu}^{0}}$. Therefore $S A$ commutes every sub. operator. If A is regular, then we have obviously $S \circ A \prec A, L \circ A \prec A, I \circ A \prec A$ by definition.

Lemma 4. If R is super-universally continuous and a modificator A commutes every loc. operator, then we have

$$
\left(L^{\circ} S\right) A \sim L S A \succ S L A
$$

Proof. We suppose that $a_{0}=L S A-\lim _{\nu \rightarrow \infty} a_{\nu}$. As R is superuniversally continuous by assumption, we can find $\left[p_{\mu}\right](\mu=1,2, \cdots)$ such that

$$
\left[p_{\mu}\right] a_{0}=S A-\lim _{\nu \rightarrow \infty}\left[p_{\mu}\right] a_{\nu}(\mu=1,2, \cdots), \quad \bigcup_{\mu=1}^{\infty}\left[p_{\mu}\right] \geqq \bigcup_{\nu=1}^{\infty}\left[a_{\nu}\right] .
$$

Then we can find $\Im_{\mu} \in S$ by definition such that

$$
\left[p_{\mu}\right] a_{0}^{\tilde{\xi}}=A-\lim _{\nu \rightarrow \infty}\left[p_{\mu}\right] a_{\nu}^{\mathfrak{\xi}} \quad \text { for all } \mathfrak{\zeta \in \mathbb { S } _ { \mu }}(\mu=1,2, \cdots) .
$$

Denoting by \mathfrak{S} the intersection of all $\mathfrak{S}_{\mu}(\mu=1,2, \cdots)$, we see easily by the diagonal method that $\mathfrak{S} \in S$. Denoting by \mathfrak{B} the set of all $\mathfrak{l}[p]$ such that $[p] \leqq\left[p_{\mu}\right]$ for some $\mu=1,2, \cdots$ or $[p]\left[p_{\mu}\right]=0$ for all $\mu=1$, $2, \cdots$, we see easily that $\mathfrak{Z} \in L$, because A commutes every loc. operator by assumption. Thus we have

$$
a_{0}^{\mathfrak{Y}}=A-\lim _{\nu \rightarrow \infty} a_{\searrow}^{\Upsilon \mathfrak{B}} \quad \text { for all } \mathfrak{l} \in \mathfrak{R}, \mathfrak{S} \in \mathbb{S},
$$

and hence $a_{0}=(L \circ S) A$ - $\lim _{\nu \rightarrow \infty} a_{\nu}$. Therefore we have $L S A \succ(L \circ S) A$. On the other hand we have ($L \circ S$) $A \succ L S A$ by (2), (3). Consequently $(L \circ S) A \sim L S A$. As $L \circ S=S \circ L \geqq S L$, we obtain hence $L S A \succ S L A$.

A modificator is said to be standard, if it is composed only of O, S, L, I by the product and the direct product.

Theorem 3. If R is super-universally continuous, then every standard modificator is equivalent to one of $O, S, L, L S, S L$.

Proof. We need only to show $S L S \sim L S L \sim I L S \sim I S L \sim S L$. As $L S \succ S L$ by Lemma 4, we obtain by (6), (8), (7): $S L S \succ S S L=S L \succ S L S$, and by (9), Lemma 3: $L S L \succ S L L=S L \succ L S L$. As $L \sim I$ by (12), we have by (6), (16), (11): $I S L \sim I S I \sim I I S=I S \sim S I \sim S L . \quad$ As $I L \leqq L I$ by
(13), (2), we have by (3), (16), (12): $I L S \leqq L I S \sim L S I \sim L S L \sim S L$. On the other hand we have $I L S \succ I S L$ by Lemma 4 and (6), and $I S L \sim S L$, as proved just above.

Theorem 4. If R is super-universally continuous and complete,*) then every standard modificator is equivalent to one of O and S.

Proof. If R is super-universally continuous and complete, then we see easily $I \sim L \sim O$. Thus we obtain by Lemmas 3 and 4

$$
S \succ L S \succ S L \sim S O=S
$$

Therefore we conclude our assertion from Theorem 3.

References

[1] L. Kantorovitch: Lineare halbgeordnete Räume, Math. Sbornik, 2 (44), 121-168 (1937).
[2] H. Nakano: Teilweise geordnete Algebra, Jap. Jour. Math., 17, 485-511 (1941).
[3] -_: Ergodic theorems in semi-ordered linear spaces, Ann. Math., 49, 538-556 (1948).
[4] -: Modulared Semi-ordered Linear Spaces, Tokyo (1950).
[5] -: Modern Spectral Theory, Tokyo (1950).

[^0]
[^0]: *) A semi-ordered linear space is said to be complete if every orthogonal sequence of elements is bounded (cf. [5]).

