2. Notes on Tauberian Theorems for Riemann Summability. II

By Kenji Yano
Department of Mathematics, Nara Women's University, Nara, Japan
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1959)

In this note we shall deal with the problem proposed in § 12 of Yano [6]. We prove a theorem (Theorem 1) concerning Riemann summability by using Lemma 3. Riemann summability of $\sum a_{n}$ is closely connected with Cesàro summability of an even function $\varphi(t) \in L$ with Fourier coefficients a_{n}. Here we notice that in Riemann summability a_{n} are independent of Fourier coefficients. Lemma 1 will interpret the relation between these two summabilities by the help of Lemmas 2 and 4 ; - this is a chief object of this paper. In § 3 we shall give " Riemann-Cesàro summability "-analogue.

1. Riemann summability. A series

$$
\sum a_{\nu}=\sum_{\nu=1}^{\infty} a_{\nu} \quad\left(a_{0}=0\right)
$$

is said to be summable to sum s by Riemann method of order p, or briefly summable (R, p) to s, if the series in

$$
F(t)=\sum_{\nu=1}^{\infty} a_{\nu}\left(\frac{\sin \nu t}{\nu t}\right)^{\nu}
$$

converges in some interval $0<t<t_{0}$, and $F(t) \rightarrow s$ as $t \rightarrow 0$ (cf. Verblunsky [1]). Here we suppose that p is a positive integer, and a_{n} are real throughout this paper.

The n-th Cesàro sum of order r of $\sum a_{\nu}$ is

$$
s_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r} a_{\nu} \quad(-\infty<r<\infty)
$$

where A_{n}^{r} is defined by the identity

$$
(1-x)^{-r-1}=\sum_{n=0}^{\infty} A_{n}^{r} x^{n} \quad(|x|<1)
$$

and in particular $a_{n}=s_{n}^{-1}$.
Theorem 1. Let $\left.-1 \leqq b,{ }^{*}\right) b<p-1<\gamma<\beta$, and $\delta=\frac{p-1-b}{\beta-p+1}(\beta-\gamma)$. If

$$
\begin{gather*}
\sum_{\nu=1}^{n}\left|s_{\nu}^{\beta}\right|=o\left(n^{\gamma+1}\right) \tag{1.1}\\
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{b}\right|-s_{\nu}^{b}\right)=O\left(n^{b+\delta+1}\right) \tag{1.2}
\end{gather*}
$$

as $n \rightarrow \infty$, then $\sum a_{\nu}$ is summable (R, p) to zero.
In the case $b=-1$ we have the following corollary.

[^0]Corollary 1. Let $p-1<\gamma<\beta$ and $\delta=p(\beta-\gamma) /(\beta-p+1)$. If (1.1) holds and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left(n^{\delta}\right) \tag{1.2}
\end{equation*}
$$

then $\sum a_{\nu}$ is summable (R, p) to zero.
This is a theorem due to Kanno [2] when (1.2)' is replaced by $\sum_{\nu=n}^{2 n}\left|a_{\nu}\right|=O\left(n^{\delta}\right)$, and δ is so restricted as $0<\delta<1$.
2. Preliminary lemmas

Lemma 1. For a series $\sum a_{\nu}$ to be summable (R, p) to sum s, it is sufficient that

$$
\begin{equation*}
\frac{1}{t^{p}} \sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{p-1} \cos \nu u d u \rightarrow \frac{s}{p} \quad(t \rightarrow 0) \tag{2.1}
\end{equation*}
$$

Inversely, the condition (2.1) is necessary when $p \leqq 2$.
Proof. From Hobson [7, p. 281], we have

$$
\begin{aligned}
(\sin t)^{p} & =(-1)^{p / 2}\left(\frac{1}{2}\right)^{p-1} \sum_{\mu=0}^{p / 2-1}(-1)^{\mu}\binom{p}{\mu} \cos (p-2 \mu) t+\left(\frac{1}{2}\right)^{p}\binom{p}{p / 2} \quad(p, \text { even }) \\
& =(-1)^{(p-1) / 2}\left(\frac{1}{2}\right)^{p-1} \sum_{\mu=0}^{(p-1) / 2}(-1)^{\mu}\binom{p}{\mu} \sin (p-2 \mu) t \quad(p, \text { odd }) .
\end{aligned}
$$

Replacing t by $n t$, differentiating with respect to $t p$-times, and then dividing both sides by n^{p} we get

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{p}\left(\frac{\sin n t}{n}\right)^{p}=\left(\frac{1}{2}\right)^{p-1} \sum_{\mu=0}^{[(p-1) / 2]}(-1)^{\mu}\binom{p}{\mu}(p-2 \mu)^{p} \cos (p-2 \mu) n t, \tag{2.2}
\end{equation*}
$$

in the unified form. On the other hand, clearly

$$
\begin{equation*}
\left(\frac{\sin n t}{n t}\right)^{p}=\frac{1}{\Gamma(p)} \frac{1}{t^{p}} \int_{0}^{t}(t-u)^{p-1}\left(\frac{d}{d u}\right)^{p}\left(\frac{\sin n u}{n}\right)^{p} d u . \tag{2.3}
\end{equation*}
$$

Substituting (2.2) into the integrand of (2.3) we have

$$
\begin{align*}
&\left(\frac{\sin n t}{n t}\right)^{p}=\left(\frac{1}{2}\right)^{p-1} \frac{1}{\Gamma(p)} \sum_{\mu=0}^{[(p-1) / 2]}(-1)^{\mu}\binom{p}{\mu}(p-2 \mu)^{p} \\
& \cdot \frac{1}{t^{p}} \int_{0}^{t}(t-u)^{p-1} \cos (p-2 \mu) n u d u \tag{2.4}
\end{align*}
$$

Tending t to zero in both sides of (2.4) with $n=1$, we have the identity

$$
\begin{equation*}
1=\left(\frac{1}{2}\right)^{p-1} \frac{1}{\Gamma(p)} \sum_{\mu=0}^{[(p-1) / 2]}(-1)^{\mu}\binom{p}{\mu}(p-2 \mu)^{p} \frac{1}{p} . \tag{2.5}
\end{equation*}
$$

Now, writing $t_{\mu}=(p-2 \mu) t$, (2.4) becomes

$$
\begin{aligned}
\left(\frac{\sin n t}{n t}\right)^{p}=\left(\frac{1}{2}\right)^{p-1} \frac{1}{\Gamma(p)} \sum_{\mu=0}^{[(p-1) / 2]} & (-1)^{\mu}\binom{p}{\mu}(p-2 \mu)^{p} . \\
& \cdot \frac{1}{t_{\mu}^{p}} \int_{0}^{t_{\mu}}\left(t_{\mu}-u\right)^{p-1} \cos n u d u .
\end{aligned}
$$

Hence, if for each $\mu=0,1, \cdots,[(p-1) / 2]$

$$
\frac{1}{t_{\mu}^{p}} \sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t_{\mu}}\left(t_{\mu}-u\right)^{p-1} \cos \nu u d u \rightarrow \frac{s}{p} \quad\left(t_{\mu} \rightarrow 0\right)
$$

which is (2.1), then we have

$$
\sum_{\nu=1}^{\infty} a_{\nu}\left(\frac{\sin \nu t}{\nu t}\right)^{p} \rightarrow\left(\frac{1}{2}\right)^{p-1} \frac{1}{\Gamma(p)} \sum_{\mu=0}^{[(p-1) / 2]}(-1)^{\mu}\binom{p}{\mu}(p-2 \mu)^{p} \frac{s}{p} \quad(t \rightarrow 0) .
$$

And the right hand side is s by (2.5). This proves the sufficiency.
The necessity for the case $p \leqq 2$ is evident by the identity (2.4), since then its right hand side contains one term only. Thus we get the lemma.

Lemma 2. Let $r>0, q$ そ0 be arbitrary, and let k be an integer such as $k>\sup (1, r-q)$. Then

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{r-1} u^{k} \cos \nu u d u=o\left(t^{q+k}\right) \quad(t \rightarrow 0) \tag{2.6}
\end{equation*}
$$

implies

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{r-1} \cos \nu u d u=o\left(t^{q}\right) \quad(t \rightarrow 0) \tag{2.7}
\end{equation*}
$$

provided that the series in (2.6) converges uniformly in every interval $0<\eta \leqq t \leqq \pi$.

Of course this lemma holds when $0<\eta \leqq t \leqq \pi$ is replaced by $0 \leqq t \leqq \pi$.
For the proof we need a lemma.
Lemma 2.1. Let $r>0$, q §0 be arbitrary, and let k be an integer such as $k>\sup (1, r-q)$. Then a necessary and sufficient condition for

$$
\int_{0}^{t}(t-u)^{r-1} \varphi(u) d u=o\left(t^{q}\right) \quad(t \rightarrow 0)
$$

is

$$
\int_{0}^{t}(t-u)^{r-1} u^{k} \varphi(u) d u=o\left(t^{q+k}\right) \quad(t \rightarrow 0)
$$

where $\varphi(t) \in L$ in $0 \leqq t \leqq \pi$.
This is Lemma 3 in Yano [6].
Proof of Lemma 2. For any given $\varepsilon>0$ there corresponds a number $\delta=\delta(\varepsilon)$ such as

$$
\left|\sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{r-1} u^{k} \cos \nu u d u\right|<\varepsilon t^{q+k} \quad(0<t \leqq \delta),
$$

by assuming (2.6). And, by the assumption concerning uniform convergence we have

$$
\left|\sum_{\nu=1}^{n} a_{\nu} \int_{0}^{t}(t-u)^{r-1} u^{k} \cos \nu u d u\right|<2 \varepsilon t^{q+k}
$$

for $0<\eta \leqq t \leqq \delta$ and $n \geqq n_{0}$, where $n_{0}=n_{0}(\eta)$. Now putting $\varphi(t)=\sum_{\nu=1}^{n}$. - $a_{\nu} \cos \nu u$, by the sufficiency part of Lemma 2.1 we get

$$
\left|\sum_{\nu=1}^{n} a_{\nu} \int_{0}^{t}(t-u)^{r-1} \cos \nu u d u\right|<C \varepsilon t^{q}
$$

for $\eta \leqq t \leqq \delta$ and $n \geqq n_{0}$, where C is a constant depending on r, q and k only (cf. the proof of Lemma 2.1). In particular we have

$$
\begin{equation*}
\left|\sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{r-1} \cos \nu u d u\right| \leqq C \varepsilon t^{q} \quad(\eta \leqq t \leqq \delta), \tag{2.7}
\end{equation*}
$$

which holds clearly for every $\eta>0$ by the definition of n_{0}. Hence we see that (2.7)' holds for $0<t \leqq \delta$, and we get (2.7). This proves the lemma.

Lemma 3. Let $-1 \leqq c, \quad b<c<\gamma<\beta, \quad r=1+(c \beta-b \gamma) /(\beta-b+c-\gamma)$, and let the series in

$$
G(t)=\sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{r-1} u^{t} \cos \nu u d u
$$

where k is an integer such as $k>\gamma+1$, converge uniformly in some interval $0 \leqq t \leqq t_{0}$. In these circumstances, if

$$
\sum_{\nu=1}^{n}\left|s_{\nu}^{\beta}\right|=o\left(n^{\gamma+1}\right) \quad \text { and } \quad \sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{b}\right|-s_{\nu}^{b}\right)=O\left(n^{c+1}\right)
$$

as $n \rightarrow \infty$, then $G(t)=o\left(t^{r+k}\right)$ as $t \rightarrow 0$.
This is Corollary 4.3 in the cited paper [6].
Lemma 4. If $r>0$ is arbitrary and $a+b \geqq[r-0]$, then

$$
\int_{0}^{t}(t-u)^{r-1} u^{a}\left(2 \sin \frac{1}{2} u\right)^{b} \cos ((n+A) u+B) d u=O\left(t^{a+b} / n^{r}\right),
$$

A and B being constants, holds uniformly in n and t such as $0<t \leqq \pi$.
This is Lemma 4 in loc. cit. [6].
3. Proof of Theorem 1. By Lemma 1, it is sufficient to show that

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{p-1} \cos \nu u d u=o\left(t^{p}\right) \quad(t \rightarrow 0) \tag{3.1}
\end{equation*}
$$

under the conditions in the theorem, i.e.

$$
\begin{gather*}
\sum_{\nu=1}^{n}\left|s_{\nu}^{\beta}\right|=o\left(n^{\gamma+1}\right), \tag{1.1}\\
\left.\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{b}\right|\right)-s_{\nu}^{b}\right)=O\left(n^{b+\delta+1}\right), \tag{1.2}
\end{gather*}
$$

where

$$
\begin{equation*}
-1 \leqq b, \quad b<p-1<\gamma<\beta, \quad \delta=(\beta-\gamma)(p-1-b) /(\beta-p+1) . \tag{3.2}
\end{equation*}
$$

Now, as Lemma 2 in Yano [5] we see that (1.1), (1.2) and (3.2) imply

$$
\begin{equation*}
\sum_{\nu=1}^{n}\left|s_{\nu}^{b}\right|=O\left(n^{b+\delta+1}\right) \tag{3.3}
\end{equation*}
$$

Observing that $b \geqq-1$ and $\delta>0$, clearly (3.3) implies $\sum_{v=1}^{n}\left|a_{\nu}\right|=O\left(n^{b+\delta+1}\right)$, and then $\sum_{\nu=n}^{\infty}\left|a_{\nu}\right| / \nu^{p}=O\left(n^{b+\delta+1-p}\right)$, which is $o(1)$ as $n \rightarrow \infty$, since $b+\delta+1-p=-(p-1-b)(\gamma-p+1) /(\beta-p+1)<0$ by (3.2). In particular we have

$$
\begin{equation*}
\sum_{\nu=1}^{\infty}\left|a_{\nu}\right| / \nu^{p}<\infty \tag{3.4}
\end{equation*}
$$

On the other hand, letting $c=b+\delta$ and $r=p$, the conditions in (3.2) satisfy those in Lemma 3, i.e.

$$
-1 \leqq c, \quad b<c<\gamma<\beta, \quad r=1+(c \beta-b \gamma) /(\beta-b+c-\gamma),
$$

and so by this Lemma 3, (1.1) and (1.2) imply

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{p-1} u^{k} \cos \nu u d u=o\left(t^{p+k}\right) \quad(k>\gamma+1) \tag{3.5}
\end{equation*}
$$

provided that the left hand side series converges uniformly in $0 \leqq t \leqq \pi$. And this assumption is satisfied since

$$
\sum_{\nu=1}^{\infty}\left|a_{\nu} \int_{0}^{t}(t-u)^{p-1} u^{k} \cos \nu u d u\right|=\sum_{\nu=1}^{\infty}\left|a_{\nu}\right| \cdot O\left(t^{k} / \nu^{p}\right)<\infty,
$$

by Lemma 4 and (3.4). Further, (3.5) then implies (3.1) by Lemma 2 with $r=q=p$. Thus we get the theorem.
4. Riemann-Cesàro summability. A series $\sum a_{\nu}$ is said to be summable to s by Riemann-Cesàro method of order p and index α, or briefly summable (R, p, α) to s, if the series in

$$
\begin{equation*}
F(t)=\left(C_{p, \alpha}\right)^{-1} t^{\alpha+1} \sum_{\nu=1}^{\infty} s_{\nu}^{\alpha}\left(\frac{\sin \nu t}{\nu t}\right)^{p}, \tag{4.1}
\end{equation*}
$$

where

$$
C_{p, \alpha}=\left\{\begin{array}{lr}
(\Gamma(\alpha+1))^{-1} \int_{0}^{\infty} u^{\alpha-p}(\sin u)^{p} d u r & (-1<\alpha<p-1) \\
\pi / 2 & (\alpha=0, p=1) \\
1 & (\alpha=-1)
\end{array}\right.
$$

converges in some interval $0<t<t_{0}$, and

$$
\begin{equation*}
\lim _{t \rightarrow 0} F(t)=s \tag{4.2}
\end{equation*}
$$

This summability method has been considered by Hirokawa [3, 4], and it coincides with summability (R, p) when $\alpha=-1$. In particular the above method is called summability $\left(R_{p}\right)$ when $\alpha=0$.

Remark. The present author suspects that in the above definition the range of the index α may be extended to $-1 \leqq \alpha<p$ when p is odd, since then the number $C_{p, \alpha}$ is defined also for $p-1 \leqq \alpha<p$, the integral being in Cauchy sense, and moreover it is easily seen that

$$
\begin{equation*}
t^{\alpha+1} \sum_{\nu=1}^{\infty} A_{\nu-1}^{\alpha}\left(\frac{\sin \nu t}{\nu t}\right)^{p} \rightarrow C_{p, \alpha} \quad(t \rightarrow 0) \tag{4.3}
\end{equation*}
$$

similarly as in the cited paper [3].
We may suppose that $s=0$ in (4.2) with no loss of generality. We have the following theorem quite analogous to Theorem 1.

Theorem 2. Let $-1 \leqq b, b<p-1<\gamma<\beta$ and $\delta=\frac{p-1-b}{\beta-p+1}(\beta-\gamma)$. If

$$
\sum_{\nu=1}^{n}\left|s_{\nu}^{\beta}\right|=o\left(n^{\gamma+1}\right) \quad \text { and } \quad \sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{b}\right|-s_{\nu}^{b}\right)=O\left(n^{b+\delta+1}\right)
$$

as $n \rightarrow \infty$, then the series $\sum a_{\nu}$ is summable (R, p, α) to zero, for $-1 \leqq \alpha<p-\left((-1)^{p}+1\right) / 2$.

Proof. It is sufficient to show that

$$
t^{\alpha+1} \sum_{\nu=1}^{\infty} s_{\nu}^{\alpha}\left(\frac{\sin \nu t}{\nu t}\right)^{p} \rightarrow 0
$$

$$
(t \rightarrow 0)
$$

and its proof is, by Lemma 1 , reduced to verify

$$
\begin{equation*}
\frac{t^{\alpha+1}}{t^{p}} \sum_{\nu=1}^{\infty} s_{\nu}^{\alpha} \int_{0}^{t}(t-u)^{p-1} \cos \nu u d u \rightarrow 0 \quad(t \rightarrow 0) \tag{4.4}
\end{equation*}
$$

Further, (4.4) is true by Lemma 2 when

$$
\begin{equation*}
\frac{t^{\alpha+1}}{t^{p+k}} \sum_{\nu=1}^{\infty} s_{\nu}^{\alpha} \int_{0}^{t}(t-u)^{p-1} u^{k} \cos \nu u d u \rightarrow 0, \tag{4.5}
\end{equation*}
$$

where k is an integer such as $k>p$, provided that the series in (4.5) converges uniformly in every interval $0<\eta \leqq t \leqq \pi$. And the last assumption is satisfied by the permissibility of the succeeding transformation.

Now, using the argument in the proof of Theorem 1 of Yano [5], (4.5) may be transformed to that in

$$
\begin{align*}
& \frac{t^{\alpha+1}}{t^{p+k}} \sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{p-1} u^{k}\left(2 \sin \frac{1}{2} u\right)^{-(\alpha+1)} \\
& \cos \left(\nu u-\frac{1}{2}(\alpha+1)(u-\pi)\right) d u \rightarrow 0, \tag{4.6}
\end{align*}
$$

under the assumption in the theorem, not depending on the value of α. And, (4.6) may be proved quite analogously as

$$
\begin{equation*}
\frac{1}{t^{p+k}} \sum_{\nu=1}^{\infty} a_{\nu} \int_{0}^{t}(t-u)^{p-1} u^{k} \cos \nu u d u \rightarrow 0 \tag{4.7}
\end{equation*}
$$

does, provided that $k-\alpha-1 \geqq p$ which is permissible since k may be as large as we wish. But, as it is seen in the proof of Theorem 1, (4.7) is a result from the assumption in the theorem. Thus we get the theorem.

References

[1] S. Verblunsky: The relation between Riemann's method of summation and Cesàro's, Proc. Camb. Phil. Soc., 26, 34-42 (1930).
[2] K. Kanno: On the Riemann summability, Tôhoku Math. J. (2), 6, 155-161 (1954).
[3] H. Hirokawa: Riemann-Cesàro methods of summability, Tôhoku Math. J. (2), 7, 279-295 (1955).
[4] H. Hirokawa: Riemann-Cesàro methods of summability II, Tôhoku Math. J. (2), 9, 13-26 (1957).
[5] K. Yano: Notes on Tauberian theorems for Riemann summability, Tôhoku Math. J. (2), 10, 19-31 (1958).
[6] K. Yano: Convexity theorems for Fourier series, J. Math. Soc. Japan (to appear).
[7] E. W. Hobson: A treatise on plane trigonometry, fifth edition, Cambridge University Press (1921).

[^0]: *) We could remove the restriction $b \geqq-1$ in this theorem by the argument used in Yano [5].

