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2. Notes on Tauberian Theorems for Riemann
Summability. II

By Kenji YANO
Department of Mathematics, Nara Women’s University, Nara, Japan

(Comm. by Z. SUETUNA., NI.J./k., Jan. 12, 1959)

In this note we shall deal with the problem proposed in 12 of
Yano [6. We prove a theorem (Theorem 1) concerning Riemann
summability by using Lemma 3. Riemann summability of , a is
closely connected with Cesro summability of an even function
with Fourier coefficients a. Here we notice that in Riemann sum-
mability a are independent of Fourier coefficients. Lemma I will
interpret the relation between these two summabilities by the help of
Lemmas 2 and 4;this is a chief object of this paper. In 3 we
shall give "Riemann-Cesro summability"analogue.

1. Riemann summability. A series

,a -,a (a0--0)
is said to be summable to sum s by Riemann method of order p, or
briefly summable (R, p) to s, if the series in

a(Sint)F t)= = \----
converges in some interval 0< t< to, and F(t)--> s as t->0 (cf. Ver-
blunsky [lJ). Here we suppose that p is a positive integer, and a
are real throughout this paper.

The n-th Cesro sum of order r of a is

0

where A is defined by the identity

(l--x)--’- Z A;
0

and in particular a--s;.
If

(1.1)

THNOaE 1. Let --lb,*) b<p--l<r<, and - --p-t-

o(n +l)

:E (!(1.2)

as n->, then , a is summable (R, p) to zero.
In the case b----1 we have the following corollary.

*) We could remove the restriction b >-1 in this theorem by the argument used
in Yano [5J.
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COROLLARY 1. Let p--1<7</9 and 6=p(fl--r)/(fl--p+l). If (1.1)
holds and

(1.2)’ (i a l-a)-O(n),
then a, is summable (R, p) to zero.

This is a theorem due to Kanno [2] when (1.2)’ is replaced by

,lai--O(n), and is so restricted as 0<<1.
2. Preliminary lemmas
LEMMA 1. For a series a to be summable (R, p) to sum s, it

is sufficient that

1 f" s (t0).(2.1) t a (t--u)’- cos u du--
Inversely, the condition (2.1) is necessary when p2.
Proof. From Hobson 7, p. 281, we have

(sin t)--(--1)/ o (--1)" eos(--2)t+ (2) (p’ even)

(p, odd).

Replacing t by nt, differentiating with respect to t p-times, and then
dividing both sides by n we get

(2.2) d " .sin n.t "- (- 1) P (p-2p) cos (p-2g)nt,

in the unified form. On the other hand, clearly

(2.3) (sinnt,.)= 1 if _,(d’(s_innu.’du
nt F(p) t

(t u)
\due \ n /

Substituting (2.2) into the integrand of (2.3) we have

(sin nt _(1)- 1 /( ,(p)(p_2/).
(2.4)

(nt-2 F(p) .=o
--1)

Z

(t-)"- cos (-) .
ending t to ero in both sides of (A) with --1, we have the

identity

(.) 1 ()- 1 [(’-17/]

N (-) (_)1
V(p) ,=o p

Now, writing t,-(p-2p)t, (2.4) becomes

nt / v(v) .=o
(-1). (-2z).

(" (t.-u),- cos nu du.
t$ "o

Hence, if for each Z=0, 1,..., [(p-1)/2
1 a (t.-u)’- cos ,u du--=
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which is (2.1), then we have

(sint {I\-1 -/’ ()= ’, ) -+\-) F p
(--1)" (p--2/)"sly (->0).

And the right hand side is s by (2.5). This proves the sufficiency.
The necessity for the case p2 is evident by the identity (2.4),

since then its right hand side contains one term only. Thus we get
the lemma.

LEMMA 2. Let r>0, q--0 be arbitrary, and let k be an integer
such as k>sup (1, r--q). Then

(2.6) =a (t--u)-u’ cos ,u du=o(tq/) (t ->0)

implies

(2.7) = a (t--u) cos ,u du-- o(tq) (t->O),

provided that the series in (2.6) converges uniformly in every interval

Of course this lemma holds when 0<__<t< is replaced by 0t<.
For the proof we need a lemma.
LEMMA 2.1. Let r0, q0 be arbitrary, and let k be an integer

such as k >sup (1, r-q). Then a necessary and sueient condition for

’(t-u) du- o(t ) (t O)

is

’(t--u)-u9(u) du=o(t/) (t ->0),

where (t)L in 0<t<r.
This is Lemma 3 in Yano 6.
Proof of Lemma 2. For any given s0 there corresponds a

number -(s) such as

a. (t--u)-u cos vu du <et+ (0<tO),

by assuming (2.6). And, by the assumption concerning uniform con-
vergence we have

(t--)-eosg st*

for 0<t and , where =o(). Now utting p()-.
a cos , by the sueieney ar of Lemma 2.1 we get

a (t--)-eosg <Cst

fort and , where is a eonsmn deending on e, q and
only (el. the roof o Lemma 2.1). In artieular we have
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(2.7)’ I.a, (t--u) cos ,u du

which holds clearly for every 0 by the definition of n0. Hence we
see that (2.7)’ holds or 0<t3, and we get (2.7). This proves the
lemma.

LEMMA 3. Let --1c, b<c<y<fl, r-l+(cfl--br)/(fl--b+c--),
and let the series in

f(t)- (t-)- cos ,
where k is an integer such as >r+l, converge uniformly in some
interval OtNto. In hese circumstances, if

Ni-o(*) and (i-)-0(*)

as , hen ()-o() s 0.
Tis is Corollary 4.3 n he cited paper 6.
LA 4. If 0 is arbitrary ad --0, en

f’ 1 eos((+A)+B)g_O(t./),(t--)"- 2 sin
A and B being constants, holds uniformly in and

his is emma in loe. ei.
8. Proof of heorem 1. By Lemma 1, i is suNeient to show hat

(a.1) a (t-)-eosa-o(t) (tO),

under he conditions in the theorem, i.e.

(1.1) N sel o(n+),

(.2) E (s )-s) O(n++),

where
(3.2) -lb, b<-<r<, -(--r)(----b)/(--+).

Now, as Lemma 2 in Yano [5] we see that (1.1), (1.2) and (3.2)
imply

(.) s O(n++).

Observing that b=-- 1 and >0, clearly (3.3) implies ?=]a[-O(n++),
and then %[a]/,’-O(n++-’), which is o(1) as n, since
b++l--p---(p--l--b)(--p+l)/(fl--p+l)<O by (3.2). In particular
we have

On the other hand, letting c=b+ and r-p, the conditions in (3.2)
satisfy those in Lemma 3, i.e.

--lc, b<c<r<fl, r=l+(c--br)/(--b+c--),
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and so by this Lemma 3, (1.1) and (1.2) imply

f,(3.5) =a, (t--u)’-ucos ,udu-o(t/) (k>T+l),

provided that the left hand side series converges uniformly in 0t.
And this assumption is satisfied since

a, (t--u)’-u cos ,u du ]a, [.O(t/,)< ,
by Lemma 4 and (3.4). Further, (3.5) then implies (3.1)by Lemma 2
with r=q-p. Thus we get the theorem.

4. Riemann-Cesro summability. A series a is said to be
summable to s by Riemann-Cesro method of order p and index a,

or briefly summable (R, p, a) to s, if the series in

where

(F(a+l))- u-(sin u)Vdu (--l<a<p--1)

C,--|/2 (a--O, p--1)
(- -),

converges in some interval O<t<to, and
(4.2) lim r(t) s.

t-0

This summability method has been considered by Hirokawa [3, 4,
and it coincides with summability (R, p) when a---1. In particular
the above method is called summability (R) when a--0.

Remark. The present author suspects that in the above definition
the range of the index a may be extended to --la<p when p is
odd, since then the number C., is defined also for p--la<p, the
integral being in Cauchy sense, and moreover it is easily seen that

(4.3) t

similarly as in the cited paper [3].
We may suppose that s=0 in (4.2) with no loss of generality.

We have the following theorem quite analogous to Theorem 1.

TEOaEM 2. Let lb, b<p--1< T< fl and 8- P-- 1--b (fl_ T).-p+
If

Z and (is]--s)-O(n++)

as , then the series a is summab]e (, p,a)to zero, for-<p-((-)+)/2.
Proof. It is sucient to show that

s( sintt’+ Z
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and its proof is, by Lemma 1, reduced to verify

(4.4) s" (t--u)- cos ,u du--> 0 (t--> O)dP =1

Further, (4.4) is true by Lemma 2 when

(4.5) t-;- s:
d

(t--u)P-luk cos ,u du--> O,

where k is an integer such as k:>p, provided that the series in (4.5)
converges uniformly in every interval 0<GtG=. And the last as-
sumption is satisfied by the permissibility of the succeeding trans-
formation.

Now, using the argument in the proof of Theorem 1 of Yano 5J,
(4.5) may be transformed to that in

t7; : a (t-u)’-u 2 sin--21 u
(4.6)

cos (u 1---(a+ 1)(u-- :)) du --> O,

under the assumption in the theorem, not depending on the value of. And, (4.6) may be proved quite analogously as

(4.7)
t"/ =- a (t--u)’-u cos u du-->O

does, provided that k--a--lp which is permissible since k may be
as large as we wish. But, as it is seen in the proof of Theorem 1,
(4.7) is a result from the assumption in the theorem. Thus we get
the theorem.
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