17. Convergence Concepts in Semi-ordered Linear Spaces. II

By Hidegorô NAKANO

Hokkaido University (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1959)

In the part $I^{(*)}$ we discussed the standard modificators in the case where R is super-universally continuous, and we obtained Theorems 3 and 4. In the sequel, these theorems will be extended to more general cases which are essentially important in the theory of semi-ordered linear spaces.

An operator a is said to be *reducible*, if $(Pa_{\nu})^{a} = Pa^{a}_{\nu} (\nu=0, 1, 2, \cdots)$ for every projection operator P on R. A modificator A is said to be *reducible*, if every operator of A is reducible. All sub., loc. and ind. operators are obviously reducible, and hence S, L, I and all standard modificators are reducible. We see easily that AB and $A \circ B$ are reducible, if both A and B are reducible. Every reducible modificator commutes evidently all loc. operators by definition.

A semi-ordered linear space R is said to be *locally super-univer*sally continuous, if R is continuous and we can find a system of projectors $[p_{\lambda}]$ ($\lambda \in \Lambda$) such that $\bigcup_{\lambda \in \Lambda} [p_{\lambda}] = 1$ and $[p_{\lambda}]R$ is super-universally continuous for all $\lambda \in \Lambda$.

Lemma 5. If R is locally super-universally continuous, then we have

$ALSB \succ LASLB$

for every two reducible modificators A and B.

Proof. Let $[p_{\lambda}]$ ($\lambda \in \Lambda$) be a system of projectors such that $\bigcup_{\lambda \in \Lambda} [p_{\lambda}]$ =1 and all $[p_{\lambda}]R$ ($\lambda \in \Lambda$) are super-universally continuous. Recalling Lemma 4, we have ALSB > ASLB in $[p_{\lambda}]R$ for every $\lambda \in \Lambda$. Thus we have in R

ALSB > LALSB > LASLB.

Lemma 6. If R is locally super-universally continuous, then $(L \circ S)(L \circ S) \sim SLS.$

Proof. As $L \circ S \ge LS$ by (2), we have by (3) $(L \circ S)(L \circ S) \ge (L \circ S)LS.$

We suppose $a_0 = (L \circ S)LS$ -lim a_{ν} . Then, by virture of Theorem 1, we can find $\mathfrak{L}_0 \in L$ and $\mathfrak{S}_0 \in S$ such that

$$a_0^{\mathfrak{l}\mathfrak{s}} = LS$$
-lim $a_{\nu}^{\mathfrak{l}\mathfrak{s}}$ for all $\mathfrak{l} \in \mathfrak{L}_0$, $\mathfrak{s} \in \mathfrak{S}_0$.

As R is locally super-universally continuous, we can suppose here that

^{*)} H. Nakano and M. Sasaki: Convergence concepts in semi-ordered linear spaces. I, Proc. Japan Acad., **35**, no. 1 (1959).

 $\lceil p \rceil R$ is super-universally continuous for every $\lfloor p \rceil \in \mathfrak{L}_0$. Then we have by Lemma 4

 $a_0^{\mathfrak{lg}} = L \circ S \operatorname{-lim}_{\nu \to \infty} a_{\nu}^{\mathfrak{lg}} \quad \text{for all } \mathfrak{l} \in \mathfrak{L}_0, \ \mathfrak{g} \in \mathfrak{S}_0,$ and hence $a_0 = (L \circ S)(L \circ S) \operatorname{-lim}_{\nu \to \infty} a_{\nu}$. Thus we have $(L \circ S)(L \circ S) \prec (L \circ S) LS$ by definition. We conclude therefore $(L \circ S)(L \circ S) \sim (L \circ S)LS$. On the other hand we have by (2), (3), (4)

 $SLS = SLLS \leq (L \circ S)LS \leq L \circ (SLS) \prec SLS.$

A modificator is said to be simple, if it is composed from S, L, I and $(L \circ S)$ only by product. Simple modificators are obviously standard. It is so complicated to discuss standard modificators in general. Thus we consider here only simple modificators.

Theorem 5. If R is locally super-universally continuous, then every simple modificator is equivalent to one of

$$LSL \prec SLS \prec_{SL}^{LS} \prec L \circ S \prec_{S}^{L} \prec O.$$

Proof. In general we have (17) $(L \circ S)I \sim I(L \circ S) \sim SL.$ Because we have obviously $(L \circ S)I = L \circ S \circ I = L \circ (SI) = (SI) \circ L,$ and by (12), (6), (7), (14) $SL \sim SI \succ (SI) \circ L \geq SIL \sim SL$ and furthermore by (6), (7), (16) $SL \sim SI \sim IS \succ I(L \circ S) = I(S \circ L) \succeq ISL.$ Here we have $ISL \sim SL.$ (18)Because we have by Lemma 3, (12), (16), (11) $SL > ISL \sim ISI \sim IIS = IS \sim SI \sim SL$. As we have by (7), (4), Lemma 3 $LS \succ (LS) \circ L \ge L(S \circ L) = L(L \circ S) \ge LLS = LS$ $LS \succ S \circ (LS) \geq (S \circ L)S = (L \circ S)S \geq LSS = LS,$ $LS > (LS) \circ S \ge LSS = LS$, we obtain $L(L \circ S) \sim (L \circ S) S \sim L \circ (LS) \sim (LS) \circ L \sim S \circ (LS) \sim (LS) \circ S \sim LS.$ (19)As we have by (7), (4), Lemma 3 $SL \succ L \circ (SL) \geq (L \circ S)L = (S \circ L)L \geq SLL = SL$, $SL \succ (SL) \circ S \ge S(L \circ S) = S(S \circ L) \ge SSL = SL$, $SL \succ S \circ (SL) \ge SSL = SL$.

we obtain

$$(20) \quad S(L \circ S) \sim (L \circ S) L \sim L \circ (SL) \sim (SL) \circ L \sim S \circ (SL) \sim (SL) \circ S \sim SL.$$

Now we suppose that R is locally super-universally continuous. Putting A=S, B=O in Lemma 5, we obtain SLS > LSSL = LSL.

No. 2]

Thus we have by (7) and Lemma 3

$$LSL \prec SLS \prec_{SL}^{LS} \prec L \circ S \prec_{S}^{L} \prec O.$$

We need only to prove that for each one C of these modificators, each one of LC, SC, IC, $(L \circ S)C$ also is equivalent to one of them.

For C=LSL, we have obviously LLSL=LSL by (9). Putting A=S, B=L in Lemma 5, we obtain by Lemma 3

 $LSL \succ S \circ (LSL) \geq SLSL \succ LSSLL = LSL,$

and hence $SLSL \sim LSL$. Putting A=I, B=L in Lemma 5, we obtain by (18)

$$LSL \succ ILSL \succ LISLL = LISL \sim LSL$$
,

and hence $ILSL \sim LSL$. As LSL is regular by Lemma 3, we also have $LSL \succ (L \circ S)LSL \ge LSLSL = L(SLSL) \sim LLSL = LSL$

and hence $(L \circ S)LSL \sim LSL$.

For C=SLS, putting A=LS, B=O in Lemma 5, we obtain by (7) LSL > LSL > LSL > LLSSL = LSL,

and hence $LSLS \sim LSL$. Putting A=IS, B=O in Lemma 5, we obtain by (18)

 $ISLS \succ LISSL = LISL \sim LSL.$

On the other hand we have by (2), (12) $ISLS \leq I \circ (SLS) = SLSI \sim SLSL \sim LSL.$

Thus we have $ISLS \sim LSL$. As we have by (2), (4) $LSLS = LSSLS \leq (L \circ S)SLS \leq S \circ (LSLS) \prec LSLS$,

we also obtain $(L \circ S)SLS \sim LSL$.

For C=SL, we see easily by (2), (4), (18) $LC \sim (L \circ S)C \sim LSL$, $IC \sim SC \sim C$. For C=LS, we see easily by (2), (4)

 $SC \sim (L \circ S)C \sim SLS, \quad LC \sim C.$

Putting A=I, B=O in Lemma 5, we obtain by (18) $ILS \succ LISL \sim LSL$.

On the other hand we have by (2), (12), (16) $ILS \leq (I \circ L)S = LIS \sim LSI \sim LSL.$

Thus we obtain $IC \sim LSL$.

For $C=L\circ S$, we have obviously by (17), (19), (20), Lemma 6 $LC\sim LS$, $SC\sim IC\sim SL$, $(L\circ S)C\sim SLS$.

For C=L or S, we need not discuss, because it is trivial by (19), (20).

Theorem 6. If R is locally super-universally continuous and complete, then every standard modificator is equivalent to one of

$$LS \prec SL \prec^L_S \prec O.$$

Proof. Let $[p_{\lambda}]$ ($\lambda \in \Lambda$) be a system of projectors such that $\bigcup_{\lambda \in \Lambda} [p_{\lambda}]$ =1 and $[p_{\lambda}]R$ is super-universally continuous for all $\lambda \in \Lambda$. As $L \sim O$ in $[p_{\lambda}]R$, we have $SL \sim S$ in $[p_{\lambda}]R$ for every $\lambda \in \Lambda$. Thus we have H. NAKANO

 $LSL \sim LS$ in R. Therefore we conclude $LSL \sim SLS \sim LS$ by Theorem 5. If $a_0 = SL$ -lim a_{ν} , then we can find $\mathfrak{S} \in S$ by definition such that

$$a_0^{\mathfrak{s}} = L - \lim_{\mu \to \infty} a_{\mu}^{\mathfrak{s}}$$
 for every $\mathfrak{s} \in \mathfrak{S}$.

As $L \sim O$ in $[p_{\lambda}]R$, we obtain hence $([p_{\lambda}][p]a_{0})^{\$} = \lim_{\nu \to \infty} ([p_{\lambda}][p]a_{\nu})^{\$}$ for every $\$ \in \mathfrak{S}, \lambda \in \Lambda, p \in R$.

Thus, putting $\mathfrak{Q} = \{ [p_{\lambda}] [p] : \lambda \in \Lambda, p \in R \},$ we have $\mathfrak{Q} \in L$ and $a_{\upsilon}^{\mathfrak{g}} = \lim a_{\upsilon}^{\mathfrak{g}}$ for $\mathfrak{l} \in \mathfrak{Q}, \mathfrak{g} \in \mathfrak{S},$

and hence $a_0 = L \circ S$ -lim a_{ν} by definition. Thus we have $SL > (L \circ S)$, and consequently $SL \sim (L \circ S)$ by (2). Therefore we conclude by Theorem 5 that every simple modificator is equivalent to one of

$$LS \prec SL \prec^L_S \prec O.$$

Now we can prove that every standard modificator is equivalent to one of them. For this, we need only to show that for every pair C_1 , C_2 of them, $C_1 \circ C_2$ is equivalent to one of them. First of all, we have $L \circ S \sim SL$, as proved just above. By virtue of (19) and (20), we have obviously

$$L \circ (LS) \sim (LS) \circ L \sim (LS) \circ S \sim S \circ (LS) \sim LS$$

$$L\circ(SL)\sim(SL)\circ L\sim(SL)\circ S\sim S\circ(SL)\sim SL$$

We also have by (4), (2), Lemma 3

$$\begin{split} SL\succ(SL)\circ(SL) &\geq S(L\circ(SL)) = S((SL)\circ L) \geq SSLL = SL, \\ LS\succ(LS)\circ(SL) &\geq LSSL = LSL\sim LS, \\ LS\succ(SL)\circ(LS) &\geq SLLS = SLS\sim LS, \\ LS\succ(LS)\circ(LS) &\geq LSLS\sim LLS = LS, \end{split}$$

and hence $(SL)\circ(SL)\sim SL$, $(LS)\circ(SL)\sim (SL)\circ (LS)\circ (LS)\circ (LS)\sim LS$.

Example 1. Let \mathfrak{S} be a totally additive set class on a space S; m(E) $(E \in \mathfrak{S})$ a totally additive measure; and R_0 the totality of measurable functions on S. For φ , $\psi \in R_0$ we define $\varphi \geq \psi$, if

 $m\{x: \varphi(x) < \psi(x), x \in E\} = 0$ for $m(E) < +\infty$,

that is, $\varphi(x) \ge \psi(x)$ almost everywhere in E for $m(E) < +\infty$. Then we see easily that R_0 constitutes a locally super-universally continuous, complete, semi-ordered linear space. Let R_1 be the set of all such measurable functions φ on S that we can find a sequence of sets $E_{\nu} \in \mathfrak{S}$ with $m(E_{\nu}) < +\infty$ ($\nu=1, 2, \cdots$) for which $x \in E_{\nu}$ for all $\nu=1, 2, \cdots$ implies $\varphi(x)=0$. R_1 is obviously a semi-normal manifold of R_0 and we see easily that R_1 is super-universally continuous and complete. We denote by R an arbitrary semi-normal manifold of R_0 . R is obviously locally super-universally continuous.

There are two well-known convergence concepts in R, that is, the point convergence and the measure convergence. A sequence $\varphi_{\nu} \in R$ $(\nu=1, 2, \cdots)$ is said to be *point convergent* to φ_0 , if $\lim_{\nu \to \infty} \varphi_{\nu}(x) = \varphi_0(x)$ almost everywhere in E for $m(E) < +\infty$. A sequence $\varphi_{\nu} \in R$ $(\nu=1, 2,$

No. 2] Convergence Concepts in Semi-ordered Linear Spaces. II

 \cdots) is said to be measure convergent to φ_0 , if

 $\lim_{x \to \infty} m\{x: |\varphi_{\nu}(x) - \varphi_{0}(x)| < \varepsilon, x \in E\} = 0 \quad \text{for } \varepsilon > 0, \ m(E) < +\infty.$

We can prove easily: the point convergence is equivalent to L-convergence in R_0 , O-convergence in R_1 , and L-convergence in R; the measure convergence is equivalent to LS-convergence in R_0 , S-convergence in R_1 , and LSL-convergence in R.

Example 2. Let M be the so-called M-space on the closed interval [0, 1], that is, M consists of all bounded measurable functions on [0, 1] and $\varphi \ge \psi$ is defined as $\varphi(x) \ge \psi(x)$ almost everywhere in [0, 1] for the Lebesgue measure. M is super-universally continuous. For each pair of natural numbers $\mu \le \nu$, we denote by $\chi_{(\mu,\nu)}$ the characteristic function of the closed interval $\left[\frac{\mu-1}{\nu}, \frac{\mu}{\nu}\right]$. As the set of all pairs (μ, ν) is countable, we can consider $\{\chi_{(\mu,\nu)}\}_{\nu}$ a sequence. Then we have obviously $\overline{\lim_{\nu \to \infty}} \chi_{(\mu,\nu)}(x) = 1$, $\lim_{\nu \to \infty} \chi_{(\mu,\nu)}(x) = 0$

for every point x in [0, 1]. For a sub. operator \hat{s} , if $\left\{\left(\frac{\mu}{\nu}\right)^{\hat{s}}\right\}_{\nu}$ is convergent, then $\lim_{\nu \to \infty} \chi^{\hat{s}}_{(\mu,\nu)}(x) = 0$ except for $x = \lim_{\nu \to \infty} \left(\frac{\mu}{\nu}\right)^{\hat{s}}$. Thus $\lim_{\nu \to \infty} \chi^{\hat{s}}_{(\mu,\nu)} = 0$ in *M*, because $\{\chi_{(\mu,\nu)}\}_{\nu}$ is bounded. Therefore we have

$$S-\lim_{\nu\to\infty}\chi_{(\mu,\nu)}=0$$

We have obviously for every point x in [0, 1]

$$\overline{\lim_{\nu\to\infty}} \nu\chi_{(\mu,\nu)}(x) = +\infty, \quad \lim_{\overline{\nu\to\infty}} \nu\chi_{(\mu,\nu)}(x) = 0.$$

For a sub. operator \hat{s} , if $\left\{\left(\frac{\mu}{\nu}\right)^{\hat{s}}\right\}_{\nu}$ is convergent, then $\lim_{\nu \to \infty} (\nu \chi_{(\mu,\nu)})^{\hat{s}}(x) = 0$ except for $x = \lim_{\nu \to \infty} \left(\frac{\mu}{\nu}\right)^{\hat{s}}$, and hence

$$\lim_{\nu\to\infty} (\nu \chi_{(\mu,\nu)})^{\mathfrak{s}} = 0$$

but not O-convergent, because $\{(\nu\chi_{(\mu,\nu)})^{\hat{s}}\}_{\nu}$ is not bounded in M. Thus $SL-\lim_{\nu\to\infty}\nu\chi_{(\mu,\nu)}=0,$

but $\{\nu\chi_{(\mu,\nu)}\}$ is not LS-convergent.

Let \mathfrak{S}_0 be the totality of sub. operators. We denote by R the set of all mappings from \mathfrak{S}_0 into M. For each $x \in R$, denoting by $x(\mathfrak{S})$ the image of $\mathfrak{S} \in \mathfrak{S}_0$ by x, we define $\alpha x + \beta y$ for $x, y \in R$ as

$$(\alpha x + \beta y)(\mathfrak{s}) = \alpha x(\mathfrak{s}) + \beta y(\mathfrak{s}) \quad \text{ for all } \mathfrak{s} \in \mathfrak{S}_0,$$

and $x \ge y$ as $x(\hat{s}) \ge y(\hat{s})$ for all $\hat{s} \in \mathfrak{S}_0$. Then we see easily that R is universally continuous and locally super-universally continuous, and for a sequence $\{x_{\nu}\}_{\nu \ge 1}$ we have $\lim_{\nu \to \infty} x_{\nu} = 0$ in R if and only if $\lim_{\nu \to \infty} x_{\nu}(\hat{s}) = 0$ in M for all $\hat{s} \in \mathfrak{S}_0$.

We can find uniquely a sequence $u_{\nu} \in R$ ($\nu = 1, 2, \cdots$) such that for

every sub. operator $\Re\{\mu_1, \mu_2, \cdots\}$ we have

 $\begin{array}{l} \{u_{\nu}(\hat{s})^{\hat{s}}\}_{\nu} = \{\chi_{(\mu,\nu)}\}_{\nu}, \quad u_{\nu}(\hat{s}) = 0 \quad \text{for } \nu \neq \mu_{\rho} \ (\rho = 1, 2, \cdots). \\ \text{As to this sequence } \{u_{\nu}\}_{\nu \geq 1}, \text{ we see easily that } LS-\lim_{\nu \to \infty} u_{\nu} = 0 \ but \ \{u_{\nu}\}_{\nu} \\ \text{is not SL-convergent; } LSL-\lim_{\nu \to \infty} \nu u_{\nu} = 0 \ but \ \{\nu u_{\nu}\}_{\nu \geq 1} \text{ is not SLS-convergent.} \\ \text{We also can find uniquely a sequence } v_{\nu} \in R \ (\nu = 1, 2, \cdots) \text{ such that } \\ \{v_{\nu}(\hat{s})\}_{\nu} = \{\chi_{(\mu,\nu)}\}_{\nu} \quad \text{ for all } \hat{s} \in \mathfrak{S}_{0}. \\ \text{As to this sequence } \{v_{\nu}\}_{\nu \geq 1} \text{ we have } S\text{-lim } v_{\nu} = 0 \ \text{in } R \ but \end{array}$

 $\{\nu v_{\nu}\}_{\nu \geq 1}$ is not LS-convergent. We see easily furthermore that $SLS-\lim_{\nu \to \infty} (u_{\nu} + \nu v_{\nu}) = 0,$

but $\{u_{\nu}+\nu v_{\nu}\}_{\nu\geq 1}$ is neither LS- nor SL-convergent.