15. Some Properties of F-spaces

By Takesi Isiwata

Tokyo Gakugei University, Tokyo (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1959)

 X^{10} is called an *F*-space provided for any $f \in C(X)$, $P(f) = \{x; f(x) > 0\}$ and $N(f) = \{x; f(x) < 0\}$ are completely separated. X has the F_{σ} -property if the closure of any F_{σ} -open subset of X is open. X has the E_{σ} -property if any $f \in B(U)$ has a continuous extension over X where U is any F_{σ} -open subset of X. Gillman and Henriksen [1] have proved the interest results on F-spaces; for instance, i) X is σ -complete if and only if for any $f \in C(X)$, $\overline{P(f)}$ is open; ii) X is an F-space if and only if any $f \in B(X-N)$ has a continuous extension over X where N is any Z-set of X. In general, 1) if X has the F_{σ} -property, X is σ -complete [3] and 2) if X has the E_{σ} -property, X is an F-space. If X is normal the converses of the above two statements are true [3].

In §1 we shall study the relations between a given space X and its Čech compactification $(=\beta X)$ concerning the F_{σ} -prop., E_{σ} -prop., σ completeness, or the property of being an F-space. In §2 we shall consider some questions arising in connection with the theorems in §1.

1. Theorem 1. The following conditions are equivalent for any space X: 1) X has the F_{σ} -property; 2) any subspace Y of βX containing X as a proper subset has the F_{σ} -property; 3) any proper F_{σ} -open subset of X has the F_{σ} -property.

Proof. $(1 \rightarrow 2)$. Let V be any F_{σ} -open subset of Y. $U = V \cap X$ is also F_{σ} -open in X and hence $\overline{U}(\operatorname{in} X)$ is open in X. On the other hand, $\beta X = \beta(\overline{U}(\operatorname{in} X)) \cup \beta(X - \overline{U}(\operatorname{in} X)), \ \beta(\overline{U}(\operatorname{in} X)) \cap \beta(X - \overline{U}(\operatorname{in} X)) = \theta$ and $\overline{U}(\operatorname{in} \beta X) = \beta(\overline{U}(\operatorname{in} X))$. Since X is dense in Y and $U = X \cap V$ and V is open in Y, we have $\overline{V}(\operatorname{in} Y) = \overline{U}(\operatorname{in} \gamma) = \overline{U}(\operatorname{in} \beta X) \cap Y$ and hence $\overline{V}(\operatorname{in} Y)$ is open.

 $(2 \rightarrow 3)$. Let U be a proper F_{σ} -open subset of X and let V be F_{σ} -open in U. V is F_{σ} -open in X and we put $Y = (\beta X - (\overline{V}(\ln \beta X) - V)) \cup X$. Since V is F_{σ} -open in Y and Y has the F_{σ} -property, $\overline{V}(\ln Y)$ is open in Y and hence $\overline{V}(\ln U) = \overline{V}(\ln Y) \cap U$ is open in U.

 $(3 \rightarrow 1)$. Let U be any proper F_{σ} -open subset of X. Suppose that $\overline{U} \neq X$ and $a \in X - \overline{U}$. There exists $f \in B(X)$ such that f(a)=0 and

¹⁾ A space X considered here is always a completely regular T_1 -space. The functions are assumed to be real-valued and C(X)(B(X)) denotes the totality of (bounded) continuous functions defined on X.

f(x)=1 on U. P(f) is F_{σ} -open in X and $P(f) \supset U$. $\overline{U}(\operatorname{in} P(f))$ is open in P(f) by (3) and hence $\overline{U}(\operatorname{in} X) = \overline{U}(\operatorname{in} P(f))$ is open in X.

Theorem 2. The following conditions are equivalent for any space X: 1) X has the E_{σ} -property; 2) any subspace Y of βX containing X as a proper subset has the E_{σ} -property; 3) any proper F_{σ} -open subset of X has the E_{σ} -property.

Proof. $(1 \rightarrow 2)$. Let V be F_{σ} -open in Y and $g \in B(V)$. $U = X \frown V$ is F_{σ} -open in X. By the assumption, a function f(=g|V) has a continuous extension h over X and hence over βX . h|Y is an extension of g because U is dense in V.

 $(2 \rightarrow 3)$. Let U, V and Y be sets as in the proof $(2 \rightarrow 3)$ in Theorem 1 and $f \in B(V)$. Then by the assumption, f can be continuously extended over Y and hence over U.

 $(3 \rightarrow 1)$. Let U be an F_{σ} -open subset of X and $f \in B(U)$. We take a point p in U and an open neighborhood V of p contained in U. By the complete regularity of X, there exists $g \in B(X)$ such that $g \ge 0$, g(p)=0 and g(x)=1 on X-V. Then P(g) is a proper F_{σ} -open subset of X and hence $P(g) \cap U$ is F_{σ} -open in P(g). Therefore $f \mid (P(g) \cap U)$ has a continuous extension h over P(g). Then a function F(x) defined by F(x)=h(x) for $x \in P(g)$ and F(x)=f(x) for $x \in g^{-1}(0)$, is a continuous extension of f over X.

Theorem 3. The following conditions are equivalent for any space X: 1) X is an F-space; 2) βX is an F-space; 3) P(f) is an F-space for any $f \in C(X)$ such that $P(f) \neq X$.

Proof. $(1 \leftrightarrow 2)$ is obtained by Gillman and Henriksen [1].

 $(1 \rightarrow 3)$. Suppose that $P(f) \neq X$ and $g \in B(P(f))$ and M = P(f) - Z(g). We shall prove that any $h \in B(M)$ can be continuously extended over P(f). Let $\varphi = f \lor 0$ on X. Then $P(f) = X - Z(\varphi)$ and hence g has a continuous extension g^* over X because $g \in B(X - Z(\varphi))$. Since $Z(\varphi g^*) = Z(\varphi) \smile Z(g^*)$, we have $h \in B(X - Z(\varphi g^*))$, therefore h has a continuous extension over X and hence over P(f).

 $(3 \rightarrow 1)$. Let $f^* \in C(X)$ and $g \in B(X-Z(f^*))$. Since Z(f)=Z(|f|), we assume that $f \ge 0$. For any (fixed) point $a \in P(f)$, there is $h \in B(X)$ such that h(a)=0 and h(x)=1 on Z(f). P(h) is an F-space and $g \in B(P(h)-Z(f'))$ where f'=f|P(f), and hence g has a continuous extension g' on P(h). Let us put G(x)=g'(x) for $x \in P(h)$ and G(x)=g(x)for $x \notin P(h)$. Then G(x) is a continuous extension of g over X and G(x)|P(f)=g.

Theorem 4. The following conditions are equivalent for any space X: 1) X is σ -complete; 2) βX is σ -complete; 3) P(f) is σ -complete for any $f \in C(X)$ such that $P(f) \neq X$.

Proof. $(1 \leftrightarrow 2)$. The arguments of this proof are essentially the

72

same as those used in [7, Theorem 1].

 $(1 \rightarrow 3)$. Let U = P(f), $f \in C(X)$. We shall prove that $\overline{P(g)}(\operatorname{in} U)$ is open in U for every $g \in B(U)$. Since X is an F-space and U = X $-Z(f \lor 0)$, g has a continuous extension \tilde{g} over X and $\overline{P(\tilde{g})}(\operatorname{in} X)$ is open in X because X is σ -complete. On the other hand, since $\overline{U}(\operatorname{in} X)$ is open, $\overline{P(g)}(\operatorname{in} U) = \overline{P(g)}(\operatorname{in} \overline{U}) \frown U = \overline{P(g)}(\operatorname{in} X) \frown U = \overline{P(\tilde{g})}(\operatorname{in} X) \frown U$ and hence $\overline{P(g)}(\operatorname{in} U)$ is open in U.

 $(3 \rightarrow 1)$. Let $f \in C(X)$, $f \ge 0$ and U = P(f). If there is a point a in X-U, then there exists $g \in C(X)$ such that g(a)=0 and g(x)=1 on U. By the assumption, P(g) is σ -complete and $P(f) \subset P(g)$ and hence $\overline{P(f)}(\operatorname{in} P(g))$ is open in P(g). Since g(P(f))=1, $\overline{P(f)}(\operatorname{in} X)$ is open in X.

2. Let X be a space having the F_{σ} -property and Z any compactification of X. By Theorem 1, it is natural to consider the question whether the F_{σ} -property for any subspace of Z containing X as a proper dense subspace implies $\beta X = Z$ or not.²⁾ In the following, we deal with this question and similar ones; we give negative answers for these problems. First we shall consider compact subsets in F-spaces.

Theorem 5.³⁾ If X is an F-space and A is any compact subset of X, then $A-A_1$ is countably compact where A_1 is any finite subset of A.

Proof. It is sufficient to prove that $A-A_1$ is countably compact in case $A_1=\{x\}$; the general case will be treated similarly. Suppose that there exists a closed set $B\{x_n; n=1, 2, \dots\}$ in $A-A_1$ such that each point x_n is an isolated point in B. Since A is compact, we have $\overline{B}=B \cup \{x\}$. Let f be a function on \overline{B} such that $f(x_{2n})=-1/2n$ and $f(x_{2n+1})=1/(2n+1)$ and f(x)=0. Since f is continuous on a compact subset \overline{B} , f has a continuous extension g over X. Then P(g) and N(g)are not completely separated. This contradicts the fact that X is an F-space.

Corollary 1. In an F-space, there exist no compact subsets which are countable.

Corollary 2. If an F-space has a unique structure, then X is countably compact.

From this Corollary 2, $X = [1, \Omega] \times [1, \omega] - \{(\Omega, \omega)\}$ is not an *F*-space because X has a unique structure but is not countably compact

²⁾ In this question, if " F_{σ} -property" is replaced by "stoneanness" this question is affirmatively solved [7, Theorem 7]. For the special case, we have $\beta X = Z$ certainly because X is always the complement of Z-set of Z where X is a locally compact, σ compact F-space.

³⁾ This theorem is a generalization of Corollary 2.4 in [1] and Theorem 3 in [7].

where ω and Ω are first ordinals of the second and third classes.

It is obvious that if $X \supset Y \ni x$ and x is a P-point of X, then x is also a P-point of Y [2]. But the converse is not true in general.⁴⁾ If Y is a dense subset of X, then the converse is true; this is seen by the following

Lemma 1. If Y is a dense subspace of X, then every P-point of Y is also a P-point of X.

Proof. Let a be a P-point of Y. If a is an isolated point in Y, a is also an isolated point in X, and hence we can assume that a is not isolated. Suppose that $\{V_n; n=1, 2, \cdots\}$ is a family of neighborhoods (in X) of a. By the regularity of X, there exists a family $\{U_n; n=1, 2, \cdots\}$ of open sets containing a in X such that $V_n \supset \overline{U}_n$ and $U_n \supset \overline{U}_{n+1}$. Since a is a P-point of Y, there exists a neighborhood U in X of a such that $\bigcap_{n=1}^{\infty} (U_n \cap Y) \supset Y \cap U$. It is well known that $\overline{Y \cap U}$ $\supset \overline{Y} \cap U = X \cap U = U$. Therefore we have $\bigcap_{n=1}^{\infty} \overline{U}_n \supset U$ and hence $\bigcap_{n=1}^{\infty} V_n$ $\supset U$. This shows that a is a P-point of X.

Lemma 2. If U is an F-open subset of X and x is a P-point of X, then $U \Rightarrow x$ implies $U \Rightarrow x$.

In the following, M is a subspace of βX containing X. We denote by $Z=M(\{C\})$ a space which is obtained by contracting C to one point c=p(C) where C is a closed subset in M-X, and $\varphi=\varphi(\{C\})$ denotes a closed continuous mapping of M onto Z such that $\varphi(x)=x$ for $x \notin C$ and $\varphi(x)=c$ for $x \in C$.

Theorem 6. Suppose that C is a compact subset of M-X. 1) Let c be a P-point of Z; if X has the F_{σ} -property or is σ -complete respectively, then any subspace Y of Z containing X has the F_{σ} property or is σ -complete respectively. 2) If C consists of P-points (and hence C is a finite set [2]), then the point c is a P-point of Z. In this case, if X is an F-space or has the E_{σ} -property respectively, then any subspace Y of Z containing X is an F-space or has the E_{σ} -property respectively.

Proof. 1) Suppose that X has the F_{σ} -property, U is F_{σ} -open in Y. If $Y \ni c$, then Y can be regarded as a subspace of M and hence, by Theorem 1, $\varphi^{-1}(Y)$ has the F_{σ} -property. Since $\varphi | \varphi^{-1}(Y)$ is a homeomorphism, Y has the F_{σ} -property. If $Y \ni c$ and $U \ni c$, then $\overline{U}(\text{in } Y) \ni c$ by Lemma 2. Let $Q = \overline{\varphi^{-1}(U)}(\text{in } \varphi^{-1}(Y))$. Since $\varphi(Q) \subset \overline{U}(\text{in } Y)$, we have $Q \frown C = \theta$ and Q is open in $\varphi^{-1}(Y)$ by the assumption. Since $\varphi | (\varphi^{-1}(Y) - C)$ is a homeomorphism of $\varphi^{-1}(Y) - C$ onto Y - c, $\varphi(Q)$ is

⁴⁾ Let N be the set of all natural numbers. $\beta N-N$ contains P-points, under the continum hypothesis [6], but it is easily seen that every point in $\beta N-N$ is not a P-point of βN .

open and closed, and we have $\varphi(Q) = \overline{U}(\text{in } Y)$, i.e. $\overline{U}(\text{in } Y)$ is open. If $Y \ni c$ and $U \ni c$, then the openness of $\overline{U}(\text{in } Y)$ is obvious. In case X is σ -complete, our assertion will be obtained replacing U by P(f) for any $f \in C(Y)$.

2) Suppose that c is not a *P*-point of *Z*. Let *U* be any F_{σ} -open subset of *Z* such that $\overline{U}(\operatorname{in} Z) \ni c$ and $U \ni c$. $V = \varphi^{-1}(U)$ is also F_{σ} -open in *M* and hence we have $\overline{V}(\operatorname{in} M) \frown C = \theta$ by Lemma 2. Since φ is a closed mapping and $\varphi(C) = c$, we have $\varphi(\overline{V}(\operatorname{in} M))$ is a closed subset of *Z* which does not contain the point *c*. This contradicts the fact that $\overline{U}(\operatorname{in} Z) = \varphi(\overline{V}(\operatorname{in} M)) \ni c$. (The converse is not true in general; see Example below.)

Next, suppose that X is an F-space and $f \in C(Y)$ and $P(f) \cup N(f) \models c$. f can be regarded as a function on $\varphi^{-1}(Y)$. By Lemma 2, $((\overline{P(f)})(in(Y)), (\overline{N(f)})(in\varphi^{-1}(Y))) \frown C = \theta$. Since C is a finite subset and $\varphi^{-1}(Y)$ is an F-space we can construct $g \in B(\varphi^{-1}(Y))$ such that g(x) = -1 on $\overline{P(f)}(in\varphi^{-1}(Y))$, g(x)=1 on $\overline{N(f)}(in\varphi^{-1}(Y))$, g(x)=0 on C and $-1 \le g \le 1$. Then we have $h = g\varphi^{-1} \in C(Y)$ because φ is a closed mapping and $\varphi(C) = c$. This shows that P(f) and N(f) are completely separated. In case X has the E_{σ} -property, our assertion will be obtained by an analogous method.

Theorem 7. Suppose that $C = \{a, b\}$. Then we have 1) if X is σ -complete, a is a P-point of M and b is not a P-point of M, then Z is not σ -complete; 2) if X has the E_{σ} -property, a is a P-point of M and b is not a P-point of M, then any subspace N of Z containing X has the E_{σ} -property; 3) if X is an F-space and both a and b are not P-point of M, then Z is not an F-space.

Proof. 1) There is $f \in B(M)$ such that $P(f) \Rightarrow b$ but $\overline{P(f)}(\text{in } M) \Rightarrow b$ and $P(f) \Rightarrow a$, f(a)=0. Since φ is a closed mapping, f can be regarded as a function on Z. Then $\overline{P(f)}(\text{in } Z) \Rightarrow c$ but c is not an inner point of $\overline{P(f)}(\text{in } Z)$ and hence Z is not σ -complete.

2) Let U be an F_{σ} -open subset of N, $f \in B(U)$. We regard f as a function in $B(\varphi^{-1}(U))$, and hence f has a continuous extension g over $\varphi^{-1}(N)$. If either i) $U \ni c$ or ii) $U \circledast c$ and g(a) = g(b), it is easy to see that g is considered as a continuous function on N. If $U \clubsuit c$ and $g(a) \doteqdot g(b)$, there is an open neighborhood W of a such that $W \frown \varphi^{-1}(U)(\operatorname{in} \varphi^{-1}(N)) = \theta$ because a is a P-point of M. There exists $h \in B(\varphi^{-1}(N))$ such that h(a) = 1, h(x) = 0 on $\varphi^{-1}(U)(\operatorname{in} \varphi^{-1}(N))$ and h(b)= 0. Then $k(x) = f(x) + f(b)h(x) \in B(\varphi^{-1}(N))$ and k(a) = k(b), and hence k can be considered as a function in B(Z) and $k \mid U = f$. This means that Z has the E_{σ} -property. 3) This follows from the fact that there exists $f \in B(M)$ such that $0 \le f \le 1$, f(a) = f(b) = 0 and $\overline{P(f)}(\text{in } M) \ni a$, $\overline{N(f)}(\text{in } M) \ni b$.

Remark. It is easily seen that Theorems 6 and 7 are true if M is any space which contains X as a dense subset (but is not necessarily contained in βX) and any subspace containing X of which is an F-space or σ -complete or has the F_{σ} - or E_{σ} -property respectively.

Example. Let $L = [1, \Omega]$ be a space such that every point α ($\neq \Omega$) is an isolated point and a neighborhood of Ω is an interval in the usual Then L is a normal P-space, and hence L has the F_{a} -property. sense. It is well known that Ω is a *P*-point of *L* [1, Example 8.7]. Therefore Ω is a *P*-point of βL by Lemma 1. Let $X = [1, \Omega)$ be a discrete space. Then βX has not P-points except points of X (see [4, 5.1] or The identical map of X onto X has a continuous [5, Th. 45]).extension φ of βX onto βL . We shall show that if $z \neq \Omega$, then $\varphi^{-1}(z)$ consists of only one point, and $\beta X - \varphi^{-1}(\Omega)$ is homeomorphic to $\beta L - \Omega$. Suppose that $z \neq \Omega$. Ω has a neighborhood U in βL which is disjoint from z and $L \cap U \supseteq \{\alpha; \alpha \ge \alpha_0\}$ for suitable ordinal α_0 . $V = L - U \cap L$ is open and closed in X and in L. Hence βV is considered as an open and closed subset in βX and in βL . This shows that our assertions are true.

References

- L. Gillman and M. Henriksen: Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc., 82, 366-391 (1956).
- [2] L. Gillman and M. Henriksen: Concerning rings of continuous functions, Trans. Amer. Math. Soc., 77, 340-362 (1954).
- [3] H. Nakano: Über das system aller stetigen funktionen auf eine topologischen Raum, Proc. Imp. Acad., 18, 308-310 (1940).
- [4] C. W. Kohls: Ideals in rings of continuous functions, Fund. Math., 45, 28-50 (1957).
- [5] E. Hewitt: Rings of real-valued continuous functions I, Trans. Amer. Math. Soc., 64, 45-99 (1948).
- [6] W. Rudin: Homogeneity problem in the theory of Čech compactifications, Duke Math. Jour., 23, 409-419, 633 (1957).
- [7] T. Isiwata: On stonean spaces, Sci. Rep. Tokyo Kyoiku Daigaku, 6, no. 152, 147–176 (1958).