58. On Locally Q-complete Spaces. II

By Takesi ISIWATA Tokyo Gakugei University (Comm. by K. KUNUGI, M.J.A., June 12, 1959)

1. In this paper we shall consider the problems characterizing a given space X by a ring of continuous functions defined on $X^{(1)}$. Shirota [1] has proved that if X is a Q-space, then C(X) characterizes X, that is, the ring isomorphism of C(X) onto C(Y) implies that X is homeomorphic to Y for any Q-spaces X and Y. In general, it is easy to see that C(X) or B(X) does not characterize X. But under some conditions on a ring isomorphism this problem is solved in the affirmative [2, 6]. On the other hand, Shanks [3] and Ishii [4] have proved that if X is locally compact, then $C_k(X)^{2}$ characterizes X.

In this paper, we shall generalize Shanks' theorem and it will be shown that for any locally Q-complete space X which is not compact, there is a subring of C(X) on which any non-trivial ring homomorphism³⁾ is a point ring homomorphism. Moreover we shall prove that such a subring characterizes X.

2. Extension of functions

Let $f \in C(X)$ and \tilde{f} be a continuous extension over βX of f (if it exists, i.e. f is bounded). If f can be continuously extended over a point $p \in \beta X - X$, f has a finite value at the point p. If f is not continuously extended over the point p, then for any m > 0, $f_m = (f \land m)$ $\lor (-m)^{4}$ has a continuous extension \tilde{f}_m because f_m is bounded. It is easily seen that $\tilde{f}_m(p) = m$. Therefore there exists a neighborhood (in X)⁵⁾ of the point p on which f > n for a given integer n > 0. Let

4) For any constant m, where no confusion will arise, we use the same letter m for a function which takes a constant value m on X. The symbols " \lor " and " \land " are used in the following sense:

 $(f \lor g)(x) = \max(f(x), g(x))$ and $(f \land g)(x) = \min(f(x), g(x))$.

5) A neighborhood (in X) of x^* means a set U such that $U = X \cap V$ where V is a neighborhood of x^* in βX .

¹⁾ A space X considered here is always a completely regular T_1 -space, and other terminologies used here, for instance C(X), are the same as in [7].

²⁾ $C_k(X)$ is a ring consisting of all continuous functions which have compact supports.

³⁾ A non-trivial ring homomorphism of a subring C_1 of C(X) means a ring homomorphism of C_1 onto R where R is a ring of all real numbers. But a ring homomorphism is not necessarily *linear*, for C_1 does not necessarily contain constant functions. A point ring homomorphism φ is defined by $\varphi(f)=f(p)$ for all $f \in C_1$ where p is a fixed point in X. In this case φ is completely determined by the point p, and hence we shall write $\varphi = \varphi_p$. A ring homomorphism φ is called to be *trivial* if $\varphi(f)=0$ for all $f \in C_1$.

 $C(f) = X \smile \{x; x \in \beta X - X, f \text{ can be continuously extended over } \{x\}\}.$ From these arguments we have

Lemma 1. Let $f \in C(X)$ and $x^* \notin C(f)$; then there is a neighborhood of x^* (in X) on which f > n for any given integer n > 0.

Lemma 2. Under the same conditions as in Lemma 1, if we put $g=f/\max(q, f^2)$ for any q>1, then we have $\tilde{g}(x^*)=0$.

Proof. Since g is bounded, g has a continuous extension \tilde{g} . $C(f) \Rightarrow x^*$ implies that for any m > q, there is a neighborhood U(in X) on which f > m by Lemma 1. Therefore g|U=1/f < 1/m. This means that $\tilde{g}(x^*)=0$.

Lemma 3. Under the same conditions as in Lemma 1, we have $\widetilde{(fg)}(x^*)=1$ for any q>1.

Proof. For any q>1, the set $A=\{x; |f(x)|\geq q\}$ is not void because f is not bounded. By the definition of g, it is obvious that fg=1 on A. Since $x^* \notin C(f)$, A contains some neighborhood (in X) of x^* on which f>q by Lemma 1. Therefore it is easily verified that $(\widetilde{fg})(x^*)=1$.

3. Subring $C_B(X)$

In §§ 3 and 4, we assume that X is locally Q-complete but not compact and B is a compact subset of βX contained in $\beta X-X$ such that i) in case X is a Q-space, B is any compact subset, ii) in case X is not a Q-space, B is any compact subset containing $(\nu X-X)^{\beta,0}$ In case ii) B is disjoint from X because X is open in νX by Theorem 2 in [7]. Let us put $Y=\beta X-B$, and $C_B(X)$ be a set of all functions in C(X) which have the property such that $Z(f)^{\beta}$ contains a neighborhood (in βX) of B where $Z(f)=\{x; f(x)=0, x \in X\}$.

Lemma 4. If $f, g \in C_B(X)$, then $f + g \in C_B(X)$.

Proof. Suppose that $Z(f)^{\beta}$ (or $Z(g)^{\beta}$) contains an open neighborhood $U(\text{in }\beta X)$ (or $V(\text{in }\beta X)$) of B. $U \cap V$ is an open neighborhood (in βX) of B and $W = X_{\frown}(U_{\frown}V)$ is a non-void open subset of X, because X is dense in βX . By the definition, both f and g vanish on W. Since $(U_{\frown}V)$ is open and X is dense in βX , it is obvious that $W^{\beta} \supset U_{\frown}V$, and hence $Z(f+g)^{\beta} \supset W^{\beta} \supset U_{\frown}V$. This means that $f+g \in C_B(X)$.

If $C_B(X)
i f$, then for any $g \in C(X)$, it is easily verified that $fg \in C_B(X)$. Thus $C_B(X)$ is an ideal of C(X). On the other hand, $C_k(Y)$ is considered as a subring contained in $C_B(X)$, since X is dense in Y and Y is locally compact.

Theorem 1. Let X be locally Q-complete but not compact. If B is a compact subset of βX contained in $\beta X-X$ such that i) in case X is a Q-space B is any compact subset, ii) in case X is not a Q-space B is any compact subset containing $(\nu X-X)$, then any non-trivial

⁶⁾ A^{β} denotes a closure (in βX) of A where A is any subset.

No. 6]

ring homomorphism of $C_{B}(X)$ is a point ring homomorphism.

Proof. If X is pseudo-compact, then we have $\nu X - X = \beta X - X$, that is, $C_{\mu}(X) = C_{\mu}(X)$, and hence we can assume that X is not pseudocompact. Let φ be a non-trivial ring homomorphism of $C = C_B(X)$; then φ can be regarded as a non-trivial ring homomorphism of $C_k(Y)$ where $Y = \beta X - B$. For if $\varphi = 0$ on $C_k(Y)$, then for any $f \in C$ there exists a $g \in C_k(Y)$ such that g=1 on $\{x; f(x) \neq 0\}$. Therefore we have $\varphi(f) = \varphi(fg) = \varphi(f)\varphi(g) = \varphi(f) \cdot 0 = 0$. This means that $\varphi = 0$ on C. Therefore, by Theorem 5 (Ishii [4]) φ becomes a point ring homomorphism of $C_k(Y)$, that is, there is a point x^* in Y such that $\varphi_{x^*} = \varphi$, i.e. $\varphi(f) = f(x^*)$ for all $f \in C_k(Y)$. Let f be any function in C. Since $g = f/\max(1, f^2)$ is bounded and g=0 on Z(f), we can consider g as a function of $C_k(Y)$. Similarly fg is also regarded as a function of $C_k(Y)$. From the remark above and the fact that φ is a ring homomorphism, we have $\varphi(fg)$ $=(fg)(x^*)$ and $\varphi(fg)=\varphi(f)\varphi(g)=\varphi(f)\widetilde{g}(x^*)$. Now suppose that $x^* \in Y-X$ and $C(f) \Rightarrow x^*$. By Lemmas 2 and 3 we have $(fg)(x^*)=1$ and $\tilde{g}(x^*)=0$. This is a contradiction. Thus either X contains x^* or $C(f) \ni x^*$. In case X contains x^* , then φ is a point ring homomorphism, because for any $g \in C - C_k(Y)$, we take a function k in $C_k(Y)$ such that $k(x^*) = 1$ and k(x)=0 for $x \notin \{y; g(x^*)-1 < g(y) < g(x^*)+1\} \cup U \subseteq X$ where U is a neighborhood of x^* which is disjoint from a neighborhood (in βX) of B. Then $kg \in C_B(X)$ and $\varphi(kg) = (kg)(x^*) = g(x^*)$. On the other hand, $\varphi(kg)$ $= \varphi(k)\varphi(g) = k(x^*)\varphi(g).$ This means that $g(x^*) = \varphi(g)$. Therefore we shall consider the remainder case: Y - X contains x^* and $C(f) \ni x^*$ for all $f \in C$. But in the following we shall prove that this case does not Since $Y - X \subset \beta X - B - X \subset \nu X$, we have $(Y - X) \subset (\nu X - X)$ happen. = θ , that is, $\nu X - X \Rightarrow x^*$. By (v) in [5], x^* is contained in G_{δ} -set of βX which is disjoint from νX . Therefore there is a function $f \in B(X)$ such that $\tilde{f}(x^*)=0$ and f>0 on X. On the other hand, βX is normal, there is a function h on βX such that h(B) = -1 and $h(x^*) = 1$. It is easy to see that $((h|X) \lor 0)/f$ is not bounded on X. By the method of construction of h, $((h|X)\vee 0)/f$ is a function contained in $C_{B}(X)$, and hence we have proved that there is a non-bounded function in $C_{B}(X)$ which can not be continuously extended over the point x^* . Thus the ring homomorphism φ must be a point ring homomorphism φ_{x^*} , $x^* \in X$.

Theorem 1 shows that there are no maximal ideals, except fixed maximal ideals, by which the residue class rings are isomorphic to the ring of all real numbers.

Next we shall introduce a topology in \widehat{X} which is a set of all fixed maximal ideals in $C_{\mathcal{B}}(X)$ as follows:

$$Cl(\widehat{A}) \ni I(a) \leftrightarrow \bigcap_{x \in A} I(x) \quad I(a)$$

where $\widehat{A} = \{I(x); x \in A \subset X\}$, and I(x) denotes a maximal ideal whose element vanishes at the point x. Then it is easily seen, using the same method as in [6], that the mapping $x \to I(x)$ gives a homeomorphism of X onto \widehat{X} [6].

From Theorem 1 and the definition of topology of \hat{X} , we have

Theorem 2. Let X be locally Q-complete but not compact and let B be any compact subset contained in $\beta X - X$ such that i) in case X is a Q-space, B is any compact subset, ii) in case X is not a Q-space, B is any compact subset containing $(\nu X - X)^{\beta}$; then $C_B(X)$ determines X.

Any Q-space is locally compact, and moreover any locally compact space is always locally Q-complete [7]. Thus we have obtained a subring of C(X) which determines X, for any locally Q-complete space which is not compact.

4. Subring $C_{\nu}(X)$

In this section we shall moreover assume that X is not a Q-space. We denote by $C_{\nu}(X)$ the subring of C(X) whose extension over νX vanishes on $\nu X - X$. Then we have

i) $Z(f) \neq \theta$ for any $f \in C_{\nu}(X)$. For if $Z(f) = \theta$, then $1/f \in C(X)$ but 1/f has not a continuous extension over νX because $f(\nu X - X) = 0$. This is a contradiction.

ii) $Z(f)^{\beta}$ contains $B = (\nu X - X)^{\beta}$ for any $f \in C_{\nu}(X)$. We assume that, no loss of generality, that $f \ge 0$. It is sufficient to prove that $Z(f)^{\beta} \supset \nu X - X$. If there is a point $b \in \nu X - X - Z(f)^{\beta}$, there is a function g in $C(\nu X)$ such that g(b)=0, $g(Z(f)^{\beta} \supset \nu X)=1$, and f is positive on some neighborhood of b. Then f+g is positive on X and f+g has an extension over νX and (f+g)(b)=0. On the other hand, $1/(f+g) \in C(X)$ and it has a continuous extension over νX . This is a contradiction.

iii) If $C_B(X) = C_{\nu}(X)$, then $\nu X - X$ is compact. Suppose that there is a point b in $B - (\nu X - X)$. Since νX is a Q-space, there is a continuous function on βX such that f(b)=0 and f is positive on X because b is contained in a G_{δ} -set of βX which is disjoint from νX [5]. On the other hand, since βX is compact, there is a continuous function g such that g(B)=0 and g is not identically zero on X. Then $f+g \in C(X)$ but $Z(f+g)^{\beta}$ contains no neighborhoods of B by the method of construction of f. Therefore $\nu X - X$ coincides with B and hence it is compact.

The converse of iii) does not hold. Such an example is given by the following space X.

Example. $X = [1, \Omega] \times [1, \omega] - (\Omega, \omega)$ where ω and Ω are the first ordinals of the second and the third classes respectively. Then X is pseudo-compact and locally compact moreover $\beta X = X \smile \{(\Omega, \omega)\}$. Thus

 $C_{B}(X) = C_{k}(X)$ and $C_{\nu}(X)$ contains a continuous function g defined by $g(\alpha, n) = 1/n$ and $g(\alpha, \omega) = 0$ where $1 \le \alpha \le \Omega$. It is obvious that $C_{B}(X)$ does not contain g, and hence $C_{B}(X) \ne C_{\nu}(X)$ even if $\nu X - X$ consists of only one point (Ω, ω) (and hence compact).

We notice that the point $p = (\Omega, \omega)$ is not a *P*-point⁷ of βX and in this case, βX is considered as a natural one-point *Q*-completion of *X*.

Let X_{ν} be the natural one-point Q-completion of X and p be an adjointed point, i.e. $X_{\nu} = X \smile \{p\}$ (see [7]).

Theorem 3. Suppose that X is locally Q-complete but not a Q-space. Then $C_{\nu}(X) = C_B(X)$ if and only if an adjointed point p of the natural one-point Q-completion X_{ν} of X is a P-point of X_{ν} where $B = (\nu X - X)^{\beta}$.

Proof. $C_{\nu}(X)$ can be regarded as a subset of $C(X_{\nu})$ consisting of all elements of $C(X_{\nu})$ which vanish at the point p. Therefore it is easily verified that if $C_{\nu}(X) = C_B(X)$, then p is a P-point of X_{ν} . Conversely, if p is a P-point of X_{ν} , then for each $f \in C_{\nu}(X)$, $\overline{Z(f)}(\text{in } X \smile B)$ contains a neighborhood of B in $X \smile B$. Since $Z(f_m) = Z(f)$ for some m > 0, it is easy to see that $Z(f)^{\beta}$ contains a neighborhood (in βX) of B, and hence we have that $C_{\nu}(X) = C_B(X)$.

From Theorem 3 and ii) we have

Corollary. If p is a P-point of X_{ν} , $\nu X - X$ is compact.

References

- T. Shirota: A generalization of theorem of I. Kaplansky, Osaka Math. Jour., 4, 121-132 (1952).
- [2] L. E. Pursell: The ring C(X, R) considered as a subring of the ring of all realvalued functions, Proc. Amer. Math. Soc., 8, 820-821 (1957).
- [3] M. E. Shanks: Rings of functions on locally compact spaces, Bull. Amer. Math. Soc., 57, 295 (abstract, no. 365) (1951).
- [4] T. Ishii: On homomorphisms of the ring of continuous functions onto the real numbers, Proc. Japan Acad., 33, 419-423 (1957).
- [5] S. Mrókwa: Functionals on uniformly closed rings of continuous functions, Fund. Math., 46, 81-87 (1958).
- [6] T. Isiwata: On the ring of all bounded continuous functions, Sci. Rep., Tokyo Kyoiku Daigaku, 5, 279-280 (1957).
- [7] T. Isiwata: On locally Q-complete spaces. I, Proc. Japan Acad., 35, 232-236 (1959).

⁷⁾ A point p of X is said to be a P-point of X if every continuous function which vanishes at p vanishes on a neighborhood of p.