57. Notes on Uniform Convergence of Trigonometrical Series. II

By Kenji YANO

Department of Mathematics, Nara Women's University, Nara (Comm. by Z. SUETUNA, M.J.A., June 12, 1959)

1. We consider a series with real terms

$$\sum_{n=1}^{\infty}a_n \quad (a_0=0),$$

and write

(1.1)
$$s_{n}^{r} = \sum_{\nu=0}^{n} A_{n-\nu}^{r} a_{\nu} = \sum_{\nu=0}^{n} A_{n-\nu}^{r-1} s_{\nu} (-\infty < \gamma < \infty),$$

(1.2)
$$t_n^r = \sum_{\nu=0}^n A_{n-\nu}^{r-1}(\nu a_{\nu}) = \sum_{\nu=0}^n A_{n-\nu}^{r-1} t_{\nu}$$

where $s_n = s_n^0$, $t_n = t_n^0$, and $A_n^r = \binom{r+n}{n}$. Then, in particular $s_0^r = 0$, $t_0^r = 0$, and for $n = 1, 2, \cdots$,

$$s_n^{-1} = a_n, \quad s_n^{-2} = a_n - a_{n-1} = -\Delta a_{n-1}, \\ t_n^0 = na_n, \quad t_n^{-1} = na_n - (n-1)a_{n-1}.$$

The object of this paper is to prove some theorems (Theorems 3-5) which will unify the results of Szász [1], Hirokawa [5] and others. This note is a continuation of Yano [6, 7].

THEOREM 1. Let 0 < r, 0 < s < 1 (or $s = 1, 2, \cdots$) and $0 < \alpha \leq 1$. If (1.3) $\sum_{\nu=1}^{n} |t_{\nu}^{\nu}| = o(n^{1+r\alpha}),$

(1.4)
$$\sum_{\nu=n}^{2n} (|t_{\nu}^{-s}| - t_{\nu}^{-s}) = O(n^{1-s\alpha}),$$

as $n \to \infty$, then the series $\sum a_n \sin nt$ converges uniformly (on the real axis).

THEOREM 2. Under the same assumption as in Theorem 1, the series $\sum a_n \cos nt$ converges uniformly when $0 < \alpha < 1$, and in the case $\alpha = 1$ this series converges uniformly if and only if $\sum a_n$ converges.

These theorems are an alternative form of Theorem 1 in the papers [6] and [7] respectively.

2. THEOREM 3. Let $0 < s \le 1$, and q be an arbitrary real constant. If

(A.2)
$$(1-x)\sum_{n=1}^{\infty}na_nx^n\to 0 \qquad (x\to 1-0),$$

(2.1)
$$\sum_{\nu=n}^{2n} (|\gamma_{\nu}| - \gamma_{\nu}) = O(n^{1-s}) \qquad (n \to \infty),$$

where

(2.2)
$$\gamma_n = (1 + qn^{-1})t_n^{1-s} - t_{n+1}^{1-s}$$
 $(n = 1, 2, \cdots),$

[Vol. 35,

then, (I) $\sum a_n \sin nt$ converges uniformly, and (II) $\sum a_n \cos nt$ converges uniformly if and only if $\sum a_n$ converges.

COROLLARY 3.1. Let p and q be two arbitrary real constants, then the condition (A.2), and

(2.3)
$$\sum_{\nu=n}^{2n} (|\gamma_{\nu}| - \gamma_{\nu}) = O(1), \text{ where }$$

(2.4) $\gamma_n = (1+qn^{-1})(na_n+p) - [(n+1)a_{n+1}+p],$ imply the conclusion of Theorem 3.

This is a result from Theorem 3 with s=1, and this corollary contains a theorem of Szász [1], in which the condition (2.3) with (2.4) is replaced by " $p \ge 0$, $q \ge 0$, and for $n \ge n_0$

$$0 \leq (n+1)a_{n+1} + p \leq (1+qn^{-1})(na_n+p)$$
".

COROLLARY 3.2. The condition (A.2) and

(2.5)
$$\sum_{\nu=n}^{2n} (|\Delta a_{\nu}| - \Delta a_{\nu}) = O(n^{-1}) \qquad (n \to \infty),$$

imply the uniform convergence of $\sum a_n \sin nt$.

This follows from Corollary 3.1 with p=0 and q=1, since then $\gamma_n=(n+1)\Delta a_n$.

Proof of Theorem 3. The theorem follows immediately from Theorems 1, 2 with $\alpha = 1$, and the following lemma.

LEMMA 1. The assumption in Theorem 3 implies $t_n^1 = o(n)$, and

(2.6)
$$\sum_{\nu=n}^{2n} (|t_{\nu}^{-s}| + t_{\nu}^{-s}) = O(n^{1-s}).$$

For the proof of this lemma we need some other lemmas.

LEMMA 1.1. If $\alpha > 0$, and s_n^{α} is defined by (1.1), then the Abel summability of $\sum a_n$, i.e.

(A.1)
$$(1-x)\sum_{n=1}^{\infty}s_nx^n \to C \qquad (x \to 1-0)$$

implies

$$(1-x)\sum_{n=1}^{\infty}(s_n^{\alpha}/A_n^{\alpha})x^n \to C \qquad (x\to 1-0).$$

This is due to Szász [3].

LEMMA 1.2. If (A.1) holds, and $s_n = O_L(1)$, then $s_n^1 \sim Cn$ as $n \to \infty$. This appears in Hardy [9, p. 155].

LEMMA 1.3. If $u_{\nu} \ge 0$ and $\alpha > 0$, then

$$\sum_{\nu=n}^{2^n} u_{\nu} = O(n^{\alpha}) \Longleftrightarrow \sum_{\nu=1}^n u_{\nu} = O(n^{\alpha}),$$
$$\sum_{\nu=n}^{2^n} u_{\nu} = O(n^{-\alpha}) \Longleftrightarrow \sum_{\nu=n}^{\infty} u_{\nu} = O(n^{-\alpha}),$$

as $n \rightarrow \infty$. O's may be replaced by o's respectively.

This is Lemma 1 in Yano [6].

Proof of Lemma 1. γ_n in (2.2) is written as

(2.1)
$$\gamma_n = (\Gamma(n+1+q)/\Gamma(n+1))\Delta c_n,$$

where $\Delta c_n = c_n - c_{n+1},$ and
(2.8) $c_n = (\Gamma(n)/\Gamma(n+q))t_n^{1-s}.$

Here we may suppose that $c_0=0$ when q>-1, and $c_0, c_1, \dots, c_{[-q]}$ are all zero when $q \leq -1$. This assumption is permissible with no loss of generality as the succeeding argument shows. Observing that $\Gamma(n+q)/\Gamma(n) \sim n^q$ by Stirling's formula, the condition (2.1) is, by (2.7), equivalent to

(2.9)
$$\sum_{\nu=n}^{2n} (|\Delta c_{\nu}| - \Delta c_{\nu}) = O(n^{1-s-q}).$$

Now, the condition (A.2), i.e. $(1-x) \sum t_n x^n \to 0$ implies

(2.10)
$$(1-x)\sum_{n=1}^{\infty} (t_n^{1-s}/A_n^{1-s})x^n \to 0 \qquad (x \to 1-0),$$

by Lemma 1.1, since $1-s \ge 0$, and (2.10) is written as

(2.11)'
$$(1-x)\sum_{n=1}^{\infty} (\Gamma(n+q)/\Gamma(n)A_n^{1-s})c_n x^n \to 0$$

by (2.8). Further, observing that $\Gamma(n+q)/\Gamma(n)A_n^{1-s} \sim \Gamma(2-s)n^{s+q-1}$, we may for the sake of convenience replace (2.11)' by

(2.11)
$$(1-x)\sum_{n=1}^{\infty} n^{s+q-1}c_n x^n \to 0 \qquad (x \to 1-0).$$

If
$$1-s-q<0$$
, applying Lemma 1.3 to (2.9) we have

(2.12)
$$\sum_{\nu=n}^{n+m-1} |\Delta c_{\nu}| - (c_n - c_{n+m}) < C n^{1-s-q}, \ C > 0,$$

for all m > 0, and then successively

$$c_n - c_{n+m} > -Cn^{1-s-q}$$
 (m=1, 2,...),
 $c_n \ge \limsup c_n - Cn^{1-s-q}$,
 $\limsup \operatorname{im inf} c_n \ge \limsup c_n$.

This implies the existence of $\lim c_n$ which may be finite or $-\infty$, and this limit must vanish by (2.11), since if otherwise we have a contradiction. So, letting $m \to \infty$, (2.12) yields

$$\sum_{\nu=n}^{\infty} |\Delta c_{\nu}| - c_n \leq C n^{1-s-q}.$$

Combining this inequality with (2.11) we get

$$(1-x)\sum_{n=1}^{\infty} n^{s+q-1} \left(\sum_{\nu=n}^{\infty} |\Delta c_{\nu}| - Cn^{1-s-q}\right) x^{n}$$

$$\leq (1-x)\sum_{n=1}^{\infty} n^{s+q-1} c_{n} x^{n} \to 0 \qquad (x \to 1-0),$$

$$(1-x)\sum_{n=1}^{\infty} \left(n^{s+q-1}\sum_{\nu=n}^{\infty} |\Delta c_{\nu}|\right) x^{n} < C \qquad (0 \leq x < 1),$$

i.e.

where and in the sequel the constant C may be different in different cases. Since the coefficients of x^n are all positive we get by an analogue to Lemma 1.2,

$$\sum_{\mu=1}^{n} \left(\mu^{s+q-1} \sum_{\nu=\mu}^{\infty} |\Delta c_{\nu}| \right) < Cn.$$

From this inequality replaced the lower limit $\nu = \mu$ in the second sum $\sum_{\nu=\mu}^{\infty}$ by $\nu = n$ it follows

$$n^{s+q}\sum_{\nu=n}^{\infty}|\Delta c_{\nu}| < Cn,$$

which and $c_n \rightarrow 0$ imply $c_n = O(n^{1-s-q})$.

(2.8) and $c_n = O(n^{1-s-q})$ yield

(2.13) $t_n^{1-s} = O(n^{1-s})$, i.e. $t_n^{1-s}/A_n^{1-s} = O(1)$.

Applying Lemma 1.2 to (2.10) and (2.13) we have $\sum_{\nu=1}^{n} (t_{\nu}^{1-s}/A_{\nu}^{1-s}) = o(n)$, which is equivalent to $t_n^{2-s} = o(A_n^{2-s})$ by the well-known property between Cesàro's summation and Hölder's. $t_n^{2-s} = o(n^{2-s})$ and (2.13) imply $t_n^{1-s+\delta} = o(n^{1-s+\delta})$ for every $\delta > 0$ by a convexity theorem of Tauberian type, and in particular

(2.14) $t_n^1 = o(n).$ Further, γ_{n-1} in (2.2) is

 $\gamma_{n-1} = -t_n^{-s} + qn^{-1}t_{n-1}^{1-s} = -t_n^{-s} + O(n^{-s})$

by (2.13). Hence, the proposition (2.6) follows from the last relation and (2.1), since

$$\sum_{\nu=n}^{2n} \left(\left| t_{\nu}^{-s} \right| + t_{\nu}^{-s} \right) = \sum_{\nu=n}^{2n} \left[\left| \gamma_{\nu-1} + O(\nu^{-s}) \right| - \gamma_{\nu-1} - O(\nu^{-s}) \right] \\ \leq \sum_{\nu=n}^{2n} \left[\left(\left| \gamma_{\nu-1} \right| - \gamma_{\nu-1} \right) + O(\nu^{-s}) \right] = O(n^{1-s}).$$

This and (2.14) prove the lemma in the present case.

If 1-s-q>0, applying Lemma 1.3 to (2.9) we have $\sum_{\nu=0}^{n-1} |\Delta c_{\nu}| + c_n < Cn^{1-s-q}$. Substituting this inequality into (2.11),

$$(1-x)\sum_{n=1}^{\infty} \left(n^{s+q-1}\sum_{\nu=0}^{n-1} |\Delta c_{\nu}|\right) x^{n} < C.$$
$$\sum_{\mu=1}^{2n} \left(\mu^{s+q-1}\sum_{\nu=0}^{\mu-1} |\Delta c_{\nu}|\right) < Cn,$$

Thus,

again by an analogue to Lemma 1.2, and so replacing the lower limit $\mu = 1$ in $\sum_{\mu=1}^{m}$ by $\mu = n$,

$$n^{s+q}\sum_{\nu=0}^{n-1}|\Delta c_{\nu}| < Cn.$$

This implies $c_n = O(n^{1-s-q})$, and the conclusion is the same as the case 1-s-q < 0.

Finally, if 1-s-q=0 then (2.11) and (2.9) are reduced to

$$(1-x)\sum_{n=1}^{\infty}c_nx^n \to 0 \qquad (x\to 1-0),$$
$$\sum_{\nu=n}^{2n}(|\Delta c_{\nu}| - \Delta c_{\nu}) = O(1) \qquad (n\to\infty),$$

and

respectively. These two conditions imply $c_n = O(1) = O(n^{1-s-q})$, by a lemma (Lemma 1) due to Szász [2]. Hence, in this case also the conclusion is the same as the case 1-s-q<0. Thus the lemma is established completely.

3. Using Theorems 1, 2 and the preceding lemmas we can prove the following theorem analogously as Theorem 3.

THEOREM 4. Let $0 < s \le 1$, and p, q be two arbitrary constants. If

(A.1)
$$(1-x)\sum_{n=1}^{\infty}s_nx^n \to \sigma \qquad (x\to 1-0),$$

260

No. 6] Notes on Uniform Convergence of Trigonometrical Series. II

and
$$\sum_{\nu=n}^{2n} (|\delta_{\nu}| - \delta_{\nu}) = O(n^{1-s}) \qquad (n \to \infty),$$

where

$$(3.1) \qquad \qquad \delta_n = (1 + qn^{-1})(t_n^{1-s} + ps_{n-1}^{1-s}) - (t_{n+1}^{1-s} + ps_n^{1-s}),$$

then $s_n \rightarrow \sigma$, and the series $\sum a_n e^{int}$ converges uniformly (on the real axis).

COROLLARY 4.1. Let p and q be two arbitrary constants, then the condition (A.1) and

(3.2)
$$\sum_{\nu=n}^{2n} (|\delta_{\nu}| - \delta_{\nu}) = O(1), \text{ where }$$

(3.3) $\delta_n = (1+qn^{-1})[ns_n-(n-1)s_{n-1}+p]-[(n+1)s_{n+1}-ns_n+p],$ imply $s_n \to \sigma$, and the uniform convergence of $\sum a_n e^{int}$

This follows from Theorem 4 with s=p=1, and contains a theorem of Szász [1], in which the condition (3.2) with (3.3) is replaced by " $p\geq 0$, $q\geq 0$, and for $n\geq n_0$

$$0 \leq (n+1)s_{n+1} - ns_n + p \leq (1+qn^{-1})[ns_n - (n-1)s_{n-1} + p]$$
".
COROLLARY 4.2. The condition (A.1) and

(3.4)
$$\sum_{\nu=n}^{2n} (|s_{\nu}^{-s-1}| + s_{\nu}^{-s-1}) = O(n^{-s}), \qquad 0 < s \leq 1,$$

imply the uniform convergence of $\sum a_n e^{int}$

This follows from Theorem 4 with p=1-s and q=1, since then the identity $t_n^r = ns_n^{r-1} - \gamma s_{n-1}^r$ implies $\delta_{n-1} = -ns_n^{-s-1}$ The case s=1 is as follows:

COROLLARY 4.3. The condition (A.1) and

$$\sum_{\nu=n}^{2n} (|\Delta a_{\nu}| - \Delta a_{\nu}) = O(n^{-1})$$

imply the uniform convergence of $\sum a_n e^{int}$

Remark. We see from Corollary 4.2 that "if $\sum a_n$ is summable $(C, -1-\delta)$ for some positive δ , then the series $\sum a_n \cos nt$ and $\sum a_n \sin nt$ converge uniformly" as it is known. But this is not true when $\delta=0$, since then a negative example has been given by Izumi [4] for the cosine series, and by Hardy-Littlewood [8] for the sine series.

Theorems 3, 4 are concerned with the case $\alpha = 1$ in Theorems 1, 2. In the case $0 < \alpha < 1$ we have the following

THEOREM 5. Let 0 < r, 0 < s < 1 (or $s=1, 2, \cdots$), and $0 < \alpha < 1$. If

$$\sum_{\nu=1}^{n} |t_{\nu}^{r}| = o(n^{1+r\alpha}),$$
$$\sum_{\nu=n}^{2n} (|\delta_{\nu}| - \delta_{\nu}) = O(n^{1-s\alpha}),$$

and

where δ_n is defined by (3.1), then $\sum a_n$ converges, and the series $\sum a_n e^{int}$ converges uniformly.

(3.5) COROLLARY 5. If
$$0 < r$$
, $0 < \alpha < 1$, and $t_n^r = o(n^{r\alpha})$ and $\sum_{\nu=n}^{2n} (|\Delta a_{\nu}| - \Delta a_{\nu}) = O(n^{-\alpha})$,

261

then $\sum a_n e^{int}$ converges uniformly.

This corollary is due to Hirokawa [5] when (3.5) is replaced by $\sum_{\nu=n}^{2n} |\Delta a_{\nu}| = O(n^{-\alpha}).$

References

- O. Szász: On uniform convergence of trigonometric series, Bull. Amer. Math. Soc., 50, 856-867 (1944).
- [2] O. Szász: On Abel and Lebesgue summability, Bull. Amer. Math. Soc., 47, 885-893 (1943).
- [3] O. Szász: On products of summability methods, Proc. Amer. Math. Soc., 3, 257-263 (1952).
- [4] S. Izumi: Some trigonometrical series IV, Tôhoku Math. J. (2), 5, 18-21 (1953).
- [5] H. Hirokawa: Uniform convergence of some trigonometrical series, Tôhoku Math. J. (2), 6, 162-173 (1954).
- [6] K. Yano: Notes on Tauberian theorems for Riemann summability, Tôhoku Math. J. (2), 10, 19-31 (1958).
- [7] K. Yano: Notes on uniform convergence of trigonometrical series. I, Proc. Japan Acad., 35, 197-200 (1959).
- [8] G. H. Hardy and J. E. Littlewood: Proc. London Math. Soc., 18 (1918).
- [9] G. H. Hardy: Divergent Series, Oxford (1949).