57. Notes on Uniform Convergence of Trigonometrical Series. II

By Kenji Yano
Department of Mathematics, Nara Women's University, Nara
(Comm. by Z. SuEtuna, m.J.A., June 12, 1959)

1. We consider a series with real terms

$$
\sum_{n=1}^{\infty} a_{n} \quad\left(a_{0}=0\right)
$$

and write

$$
\begin{align*}
& s_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-} a_{\nu}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1} s_{\nu} \tag{1.1}\\
& t_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1}\left(\nu a_{\nu}\right)=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1} t_{\nu}
\end{align*}
$$

where $s_{n}=s_{n}^{0}, t_{n}=t_{n}^{0}$, and $A_{n}^{r}=\binom{\gamma+n}{n}$. Then, in particular $s_{0}^{r}=0, t_{0}^{r}=0$, and for $n=1,2, \cdots$,

$$
\begin{array}{ll}
s_{n}^{-1}=a_{n}, & s_{n}^{-2}=a_{n}-a_{n-1}=-\Delta a_{n-1}, \\
t_{n}^{0}=n a_{n}, & t_{n}^{-1}=n a_{n}-(n-1) a_{n-1} .
\end{array}
$$

The object of this paper is to prove some theorems (Theorems $3-5$) which will unify the results of Szász [1], Hirokawa [5] and others. This note is a continuation of Yano [6, 7].

Theorem 1. Let $0<r, 0<s<1$ (or $s=1,2, \cdots$) and $0<\alpha \leqq 1$. If

$$
\begin{gather*}
\sum_{\nu=1}^{n}\left|t_{\nu}^{r}\right|=o\left(n^{1+r \alpha}\right), \tag{1.3}\\
\sum_{\nu=n}^{2 n}\left(\left|t_{\nu}^{-s}\right|-t_{\nu}^{-s}\right)=O\left(n^{1-s \alpha}\right), \tag{1.4}
\end{gather*}
$$

as $n \rightarrow \infty$, then the series $\sum a_{n} \sin n t$ converges uniformly (on the real axis).

Theorem 2. Under the same assumption as in Theorem 1, the series $\sum a_{n} \cos n t$ converges uniformly when $0<\alpha<1$, and in the case $\alpha=1$ this series converges uniformly if and only if $\sum a_{n}$ converges.

These theorems are an alternative form of Theorem 1 in the papers [6] and [7] respectively.
2. THEOREM 3. Let $0<s \leqq 1$, and q be an arbitrary real constant. If

$$
\begin{array}{lr}
(1-x) \sum_{n=1}^{\infty} n a_{n} x^{n} \rightarrow 0 & (x \rightarrow 1-0), \\
\sum_{\nu=n}^{2 n}\left(\left|\gamma_{\nu}\right|-\gamma_{\nu}\right)=O\left(n^{1-s}\right) & (n \rightarrow \infty), \tag{2.1}
\end{array}
$$

where

$$
\begin{equation*}
\gamma_{n}=\left(1+q n^{-1}\right) t_{n}^{1-s}-t_{n+1}^{1-s} \quad(n=1,2, \cdots), \tag{2.2}
\end{equation*}
$$

then, (I) $\sum a_{n} \sin n t$ converges uniformly, and (II) $\sum a_{n} \cos n t$ converges uniformly if and only if $\sum a_{n}$ converges.

Corollary 3.1. Let p and q be two arbitrary real constants, then the condition (A.2), and

$$
\begin{gather*}
\sum_{\nu=n}^{2 n}\left(\left|\gamma_{\nu}\right|-\gamma_{\nu}\right)=O(1), \quad \text { where } \tag{2.3}\\
\gamma_{n}=\left(1+q n^{-1}\right)\left(n a_{n}+p\right)-\left[(n+1) a_{n+1}+p\right] \tag{2.4}
\end{gather*}
$$

imply the conclusion of Theorem 3.
This is a result from Theorem 3 with $s=1$, and this corollary contains a theorem of Szász [1], in which the condition (2.3) with (2.4) is replaced by " $p \geqq 0, q \geqq 0$, and for $n \geqq n_{0}$

$$
0 \leqq(n+1) a_{n+1}+p \leqq\left(1+q n^{-1}\right)\left(n a_{n}+p\right) " .
$$

Corollary 3.2. The condition (A.2) and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|\Delta a_{\nu}\right|-\Delta a_{\nu}\right)=O\left(n^{-1}\right) \quad(n \rightarrow \infty) \tag{2.5}
\end{equation*}
$$

imply the uniform convergence of $\sum a_{n} \sin n t$.
This follows from Corollary 3.1 with $p=0$ and $q=1$, since then $\gamma_{n}=(n+1) \Delta a_{n}$.

Proof of Theorem 3. The theorem follows immediately from Theorems 1, 2 with $\alpha=1$, and the following lemma.

Lemma 1. The assumption in Theorem 3 implies $t_{n}^{1}=o(n)$, and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|t_{\nu}^{-s}\right|+t_{\nu}^{-s}\right)=O\left(n^{1-s}\right) . \tag{2.6}
\end{equation*}
$$

For the proof of this lemma we need some other lemmas.
Lemma 1.1. If $\alpha>0$, and s_{n}^{α} is defined by (1.1), then the Abel summability of $\sum a_{n}$, i.e.

$$
\begin{equation*}
(1-x) \sum_{n=1}^{\infty} s_{n} x^{n} \rightarrow C \quad(x \rightarrow 1-0) \tag{A.1}
\end{equation*}
$$

implies

$$
(1-x) \sum_{n=1}^{\infty}\left(s_{n}^{\alpha} / A_{n}^{\alpha}\right) x^{n} \rightarrow C \quad(x \rightarrow 1-0)
$$

This is due to Szász [3].
Lemma 1.2. If (A.1) holds, and $s_{n}=O_{L}(1)$, then $s_{n}^{1} \sim C n$ as $n \rightarrow \infty$.
This appears in Hardy [9, p. 155].
Lemma 1.3. If $u_{\nu} \geqq 0$ and $\alpha>0$, then

$$
\begin{aligned}
\sum_{\nu=n}^{2 n} u_{\nu}=O\left(n^{\alpha}\right) \Leftrightarrow \sum_{\nu=1}^{n} u_{\nu}=O\left(n^{\alpha}\right) \\
\sum_{\nu=n}^{2 n} u_{\nu}=O\left(n^{-\alpha}\right) \Leftrightarrow \sum_{\nu=n}^{\infty} u_{\nu}=O\left(n^{-\alpha}\right)
\end{aligned}
$$

as $n \rightarrow \infty$. O's may be replaced by o's respectively.
This is Lemma 1 in Yano [6].
Proof of Lemma 1. γ_{n} in (2.2) is written as

$$
\begin{equation*}
\gamma_{n}=(\Gamma(n+1+q) / \Gamma(n+1)) \Delta c_{n} \tag{2.7}
\end{equation*}
$$

where $\Delta c_{n}=c_{n}-c_{n+1}$, and

$$
\begin{equation*}
c_{n}=(\Gamma(n) / \Gamma(n+q)) t_{n}^{1-s} . \tag{2.8}
\end{equation*}
$$

Here we may suppose that $c_{0}=0$ when $q>-1$, and $c_{0}, c_{1}, \cdots, c_{[-q]}$ are all zero when $q \leqq-1$. This assumption is permissible with no loss of generality as the succeeding argument shows. Observing that $\Gamma(n+q) / \Gamma(n) \sim n^{q}$ by Stirling's formula, the condition (2.1) is, by (2.7), equivalent to

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|\Delta c_{\nu}\right|-\Delta c_{\nu}\right)=O\left(n^{1-s-q}\right) \tag{2.9}
\end{equation*}
$$

Now, the condition (A.2), i.e. $(1-x) \sum t_{n} x^{n} \rightarrow 0$ implies

$$
\begin{equation*}
(1-x) \sum_{n=1}^{\infty}\left(t_{n}^{1-s} / A_{n}^{1-s}\right) x^{n} \rightarrow 0 \quad(x \rightarrow 1-0) \tag{2.10}
\end{equation*}
$$

by Lemma 1.1 , since $1-s \geqq 0$, and (2.10) is written as

$$
\begin{equation*}
(1-x) \sum_{n=1}^{\infty}\left(\Gamma(n+q) / \Gamma(n) A_{n}^{1-s}\right) c_{n} x^{n} \rightarrow 0 \tag{2.11}
\end{equation*}
$$

by (2.8). Further, observing that $\Gamma(n+q) / \Gamma(n) A_{n}^{1-s} \sim \Gamma(2-s) n^{s+q-1}$, we may for the sake of convenience replace $(2.11)^{\prime}$ by

$$
\begin{equation*}
(1-x) \sum_{n=1}^{\infty} n^{s+q-1} c_{n} x^{n} \rightarrow 0 \quad(x \rightarrow 1-0) \tag{2.11}
\end{equation*}
$$

If $1-s-q<0$, applying Lemma 1.3 to (2.9) we have

$$
\begin{equation*}
\sum_{\nu=n}^{n+m-1}\left|\Delta c_{\nu}\right|-\left(c_{n}-c_{n+m}\right)<C n^{1-s-q}, C>0, \tag{2.12}
\end{equation*}
$$

for all $m>0$, and then successively

$$
\begin{array}{ll}
c_{n}-c_{n+m}>-C n^{1-s-q} & (m=1,2, \cdots), \\
c_{n} \geqq \lim \sup c_{n}-C n^{1-s-q}, & \\
\lim \inf c_{n} \geqq \lim \sup c_{n} . &
\end{array}
$$

This implies the existence of $\lim c_{n}$ which may be finite or $-\infty$, and this limit must vanish by (2.11), since if otherwise we have a contradiction. So, letting $m \rightarrow \infty$, (2.12) yields

$$
\sum_{\nu=n}^{\infty}\left|\Delta c_{\nu}\right|-c_{n} \leqq C n^{1-s-q}
$$

Combining this inequality with (2.11) we get

$$
\begin{array}{lll}
& (1-x) \sum_{n=1}^{\infty} n^{s+q-1}\left(\sum_{\nu=n}^{\infty}\left|\Delta c_{\nu}\right|-C n^{1-s-q}\right) x^{n} & \\
\leqq(1-x) \sum_{n=1}^{\infty} n^{s+q-1} c_{n} x^{n} \rightarrow 0 & (x \rightarrow 1-0), \\
\text { i.e. } \quad(1-x) \sum_{n=1}^{\infty}\left(n^{s+q-1} \sum_{\nu=n}^{\infty}\left|\Delta c_{\nu}\right|\right) x^{n}<C & (0 \leqq x<1),
\end{array}
$$

where and in the sequel the constant C may be different in different cases. Since the coefficients of x^{n} are all positive we get by an analogue to Lemma 1.2,

$$
\sum_{\mu=1}^{n}\left(\mu^{s+q-1} \sum_{\nu=\mu}^{\infty}\left|\Delta c_{\nu}\right|\right)<C n
$$

From this inequality replaced the lower limit $\nu=\mu$ in the second sum $\sum_{\nu=\mu}^{\infty}$ by $\nu=n$ it follows

$$
n^{s+q} \sum_{\nu=n}^{\infty}\left|\Delta c_{\nu}\right|<C n
$$

which and $c_{n} \rightarrow 0$ imply $c_{n}=O\left(n^{1-s-q}\right)$.
(2.8) and $c_{n}=O\left(n^{1-s-q}\right)$ yield

$$
\begin{equation*}
t_{n}^{1-s}=O\left(n^{1-s}\right), \text { i.e. } \quad t_{n}^{1-s} / A_{n}^{1-s}=O(1) . \tag{2.13}
\end{equation*}
$$

Applying Lemma 1.2 to (2.10) and (2.13) we have $\sum_{\nu=1}^{n}\left(t_{\nu}^{1-s} / A_{\nu}^{1-s}\right)=o(n)$, which is equivalent to $t_{n}^{2-s}=o\left(A_{n}^{2-s}\right)$ by the well-known property between Cesàro's summation and Hölder's. $t_{n}^{2-s}=o\left(n^{2-s}\right)$ and (2.13) imply $t_{n}^{1-s+\delta}$ $=o\left(n^{1-s+\delta}\right)$ for every $\delta>0$ by a convexity theorem of Tauberian type, and in particular

$$
\begin{equation*}
t_{n}^{1}=o(n) \tag{2.14}
\end{equation*}
$$

Further, γ_{n-1} in (2.2) is

$$
r_{n-1}=-t_{n}^{-s}+q n^{-1} t_{n-1}^{1-s}=-t_{n}^{-s}+O\left(n^{-s}\right)
$$

by (2.13). Hence, the proposition (2.6) follows from the last relation and (2.1), since

$$
\begin{aligned}
\sum_{\nu=n}^{2 n}\left(\left|t_{\nu}^{-s}\right|+t_{\nu}^{-s}\right) & =\sum_{\nu=n}^{2 n}\left[\left|\gamma_{\nu-1}+O\left(\nu^{-s}\right)\right|-\gamma_{\nu-1}-O\left(\nu^{-s}\right)\right] \\
& \leqq \sum_{\nu=n}^{2 n}\left[\left(\left|\gamma_{\nu-1}\right|-\gamma_{\nu-1}\right)+O\left(\nu^{-s}\right)\right]=O\left(n^{1-s}\right)
\end{aligned}
$$

This and (2.14) prove the lemma in the present case.
If $1-s-q>0$, applying Lemma 1.3 to (2.9) we have $\sum_{\nu=0}^{n-1}\left|\Delta c_{\nu}\right|$ $+c_{n}<C n^{1-s-q}$. Substituting this inequality into (2.11),

$$
(1-x) \sum_{n=1}^{\infty}\left(n^{s+q-1} \sum_{\nu=0}^{n-1}\left|\Delta c_{\nu}\right|\right) x^{n}<C
$$

Thus,

$$
\sum_{\mu=1}^{2 n}\left(\mu^{s+q-1} \sum_{\nu=0}^{\mu-1}\left|\Delta c_{\nu}\right|\right)<C n
$$

again by an analogue to Lemma 1.2, and so replacing the lower limit $\mu=1$ in $\sum_{\mu=1}^{2 n}$ by $\mu=n$,

$$
n^{s+q} \sum_{\nu=0}^{n-1}\left|\Delta c_{\nu}\right|<C n .
$$

This implies $c_{n}=O\left(n^{1-s-q}\right)$, and the conclusion is the same as the case $1-s-q<0$.

Finally, if $1-s-q=0$ then (2.11) and (2.9) are reduced to
and

$$
\begin{array}{rr}
(1-x) \sum_{n=1}^{\infty} c_{n} x^{n} \rightarrow 0 & (x \rightarrow 1-0) \\
\sum_{\nu=n}^{2 n}\left(\left|\Delta c_{\nu}\right|-\Delta c_{\nu}\right)=O(1) & (n \rightarrow \infty)
\end{array}
$$

respectively. These two conditions imply $c_{n}=O(1)=O\left(n^{1-s-q}\right)$, by a lemma (Lemma 1) due to Szász [2]. Hence, in this case also the conclusion is the same as the case $1-s-q<0$. Thus the lemma is established completely.
3. Using Theorems 1, 2 and the preceding lemmas we can prove the following theorem analogously as Theorem 3.

Theorem 4. Let $0<s \leqq 1$, and p, q be two arbitrary constants. If

$$
\begin{equation*}
(1-x) \sum_{n=1}^{\infty} s_{n} x^{n} \rightarrow \sigma \quad(x \rightarrow 1-0) \tag{A.1}
\end{equation*}
$$

and

$$
\sum_{\nu=n}^{e_{n}}\left(\left|\delta_{\nu}\right|-\delta_{\nu}\right)=O\left(n^{1-s}\right) \quad(n \rightarrow \infty)
$$

where

$$
\begin{equation*}
\delta_{n}=\left(1+q n^{-1}\right)\left(t_{n}^{1-s}+p s_{n-1}^{1-s}\right)-\left(t_{n+1}^{1-s}+p s_{n}^{1-s}\right), \tag{3.1}
\end{equation*}
$$

then $s_{n} \rightarrow \sigma$, and the series $\sum \alpha_{n} e^{i n t}$ converges uniformly (on the real axis).

Corollary 4.1. Let p and q be two arbitrary constants, then the condition (A.1) and

$$
\begin{equation*}
\sum_{\nu=n}^{\sum_{n}^{n}}\left(\left|\delta_{\nu}\right|-\delta_{\nu}\right)=O(1), \quad \text { where } \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{n}=\left(1+q n^{-1}\right)\left[n s_{n}-(n-1) s_{n-1}+p\right]-\left[(n+1) s_{n+1}-n s_{n}+p\right], \tag{3.3}
\end{equation*}
$$

imply $s_{n} \rightarrow \sigma$, and the uniform convergence of $\sum a_{n} e^{i n t}$
This follows from Theorem 4 with $s=p=1$, and contains a theorem of Szász [1], in which the condition (3.2) with (3.3) is replaced by " $p \geqq 0, q \geqq 0$, and for $n \geqq n_{0}$

$$
0 \leqq(n+1) s_{n+1}-n s_{n}+p \leqq\left(1+q n^{-1}\right)\left[n s_{n}-(n-1) s_{n-1}+p\right] " .
$$

Corollary 4.2. The condition (A.1) and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{-s-1}\right|+s_{\nu}^{-s-1}\right)=O\left(n^{-s}\right), \quad 0<s \leqq 1 \tag{3.4}
\end{equation*}
$$

imply the uniform convergence of $\sum a_{n} e^{i n t}$
This follows from Theorem 4 with $p=1-s$ and $q=1$, since then the identity $t_{n}^{\gamma}=n s_{n}^{\gamma-1}-\gamma s_{n-1}^{\gamma}$ implies $\delta_{n-1}=-n s_{n}^{-8-1} \quad$ The case $s=1$ is as follows:

Corollary 4.3. The condition (A.1) and

$$
\sum_{\nu=n}^{2 n}\left(\left|\Delta a_{\nu}\right|-\Delta a_{\nu}\right)=O\left(n^{-1}\right)
$$

imply the uniform convergence of $\sum a_{n} e^{i n t}$
Remark. We see from Corollary 4.2 that "if $\sum a_{n}$ is summable ($C,-1-\delta$) for some positive δ, then the series $\sum a_{n} \cos n t$ and $\sum a_{n} \sin n t$ converge uniformly" as it is known. But this is not true when $\delta=0$, since then a negative example has been given by Izumi [4] for the cosine series, and by Hardy-Littlewood [8] for the sine series.

Theorems 3, 4 are concerned with the case $\alpha=1$ in Theorems $1,2$. In the case $0<\alpha<1$ we have the following

Theorem 5. Let $0<r, 0<s<1$ (or $s=1,2, \cdots$), and $0<\alpha<1$. If
and

$$
\begin{gathered}
\sum_{\nu=1}^{n}\left|t_{\nu}^{r}\right|=o\left(n^{1+r \alpha}\right), \\
\sum_{\nu=n}^{2 n}\left(\left|\delta_{\nu}\right|-\delta_{\nu}\right)=O\left(n^{1-s \alpha}\right),
\end{gathered}
$$

where δ_{n} is defined by (3.1), then $\sum a_{n}$ converges, and the series $\sum a_{n} e^{i n t}$ converges uniformly.

Corollary 5. If $0<r, 0<\alpha<1$, and $t_{n}^{r}=o\left(n^{r \alpha}\right)$ and

$$
\begin{equation*}
\sum_{\nu=n}^{2 n}\left(\left|\Delta a_{\nu}\right|-\Delta a_{\nu}\right)=O\left(n^{-\alpha}\right) \tag{3.5}
\end{equation*}
$$

then $\sum a_{n} e^{i n t}$ converges uniformly.
This corollary is due to Hirokawa [5] when (3.5) is replaced by $\sum_{\nu=n}^{2 n}\left|\Delta a_{\nu}\right|=O\left(n^{-\alpha}\right)$.

References

[1] O. Szász: On uniform convergence of trigonometric series, Bull. Amer. Math. Soc., 50, 856-867 (1944).
[2] O. Szász: On Abel and Lebesgue summability, Bull. Amer. Math. Soc., 47, 885-893 (1943).
[3] O. Szász: On products of summability methods, Proc. Amer. Math. Soc., 3, 257-263 (1952).
[4] S. Izumi: Some trigonometrical series IV, Tôhoku Math. J. (2), 5, 18-21 (1953).
[5] H. Hirokawa: Uniform convergence of some trigonometrical series, Tôhoku Math. J. (2), 6, 162-173 (1954).
[6] K. Yano: Notes on Tauberian theorems for Riemann summability, Tôhoku Math. J. (2), 10, 19-31 (1958).
[7] K. Yano: Notes on uniform convergence of trigonometrical series. I, Proc. Japan Acad., 35, 197-200 (1959).
[8] G. H. Hardy and J. E. Littlewood: Proc. London Math. Soc., 18 (1918).
[9] G. H. Hardy: Divergent Series, Oxford (1949).

