81. On the Singularity of a Positive Linear Functional on Operator Algebra

By Masamichi TAKESAKI

Department of Mathematics, Tokyo Institute of Technology (Comm. by K. KUNUGI, M.J.A., July 13, 1959)

In the previous paper [3], we have introduced the notion of a singular linear functional on W^* -algebra **M** as follows: a positive linear functional φ on **M** is called singular if there exists no non-zero σ -weakly continuous positive linear functional ψ such as $\psi \leq \varphi$. \mathbf{This} notion is corresponding to the one of *purely finite additive measure* in the abelian case of Yosida-Hewitt [5]. And we have proved the decomposition theorem of positive linear functional on M, whose another proof was given by Nakamura in [2], as follows: Any positive linear functional φ on **M** is uniquely decomposed into the sum of σ -weakly continuous positive linear functional φ_1 and singular one φ_2 . And if φ is singular, then φ is so on p**M**p for every non-zero projection p of M. Moreover, suppose M_* is the space of all σ -weakly continuous linear functionals on M and M_{*}^{\perp} the space of all linear combinations of singular positive linear functionals, we have proved the following decomposition of the conjugate space M^* of $M: M^* = M_* \bigoplus_{l^1} M_*^{\perp}$ where \bigoplus_{l^1} means the l¹-direct sum of its summands. This decomposition of the conjugate space implies that of a uniformly continuous mapping which proved by Tomiyama [4] as follows: Let π be a uniformly continuous linear mapping from M into another W*-algebra N, then there exist unique two linear mappings π_1 and π_2 of **M** into **N** such that $\pi = \pi_1 + \pi_2$, π_1 is σ -weakly continuous and ${}^t\pi_2(N_*) \subset M_*^{\perp}$ where ${}^t\pi_2$ means the transpose of π_2 . And according to π being a homomorphism, positive or *-preserving, π_1 and π_2 are homomorphisms, positive or *-preserving respectively. Hence a linear functional φ on M and a linear mapping π from **M** into another W*-algebra **N** are called singular if $\varphi \in M_*^{\perp}$ and ${}^t\pi(N_*) \subset M_*^{\perp}$, respectively.

This note is devoted to give a characterization of the singularity of a positive linear functional on M and a short alternative proof of Theorem 6 in [3].

Theorem 1. Let \mathbf{M} be a W^* -algebra and φ a positive linear functional on \mathbf{M} . Then a necessary and sufficient condition that φ is singular is that for any non-zero projection e, there exists a non-zero projection $f \leq e$ such as $\langle f, \varphi \rangle = 0$.

Proof. Suppose φ is not singular, the σ -weakly continuous part φ_1 of φ is not zero by Theorem 3 in [3]. Let e be the carrier pro-

jection of φ_1 , then φ_1 is faithful on *eMe*. Hence the inequality $\varphi \ge \varphi_1$ implies the faithfulness of φ on *eMe*.

Next suppose φ is singular and e any fixed projection of M. Take a σ -weakly continuous positive linear functional ψ such as $\langle e, \varphi \rangle < \langle e, \psi \rangle$. The family \mathcal{F} of all projections p of M such as $p \leq e$ and $\langle p, \varphi \rangle \geq \langle p, \psi \rangle$ is an inductive set relative to the natural ordering. In fact, if $\{p_{\alpha}\}$ is a totally ordered subfamily of \mathcal{F} , we put $p = \sup_{\alpha} p_{\alpha}$. Then $\langle p, \varphi \rangle \geq \sup_{\alpha} \langle p_{\alpha}, \varphi \rangle \geq \sup_{\alpha} \langle p_{\alpha}, \psi \rangle = \langle p, \psi \rangle$, so that p belongs to \mathcal{F} . Therefore there exists a maximal projection p_0 of \mathcal{F} by Zorn's lemma. Putting $f = e - p_0$, we have $f \neq 0$ by the hypothesis for ψ . Moreover the maximality of p_0 implies $\langle q, \varphi \rangle < \langle q, \psi \rangle$ for every non-zero projection $q \leq f$, so that we have $\varphi < \psi$ on fMf by the usual spectral theorem. Therefore φ is σ -weakly continuous on fMf, so that φ vanishes on fMf by the singularity of φ . This concludes the proof.

This theorem is clearly equivalent to Theorem 4 of [3] in the abelian case. Moreover, using this characterization of the singularity, we can directly conclude Theorem 6 of [3] without using a maximal abelian subalgebra. That is,

Theorem 2. Let \mathbf{M} and \mathbf{N} be two σ -finite W^* -algebras and π a faithful positive linear mapping from \mathbf{M} into \mathbf{N} , then there exists a non-zero projection e of \mathbf{M} such that π is σ -weakly continuous on $e\mathbf{M}e$. And the σ -weakly continuous part π_1 of π is faithful on \mathbf{M} and the singular part π_2 of π not faithful on \mathbf{M} .

Proof. There exists a faithful σ -weakly continuous positive linear functional ψ on N by the σ -finiteness of N. Putting $\varphi = {}^{\iota}\pi(\psi)$, $\varphi_1 = {}^{\iota}\pi_1(\psi)$ and $\varphi_2 = {}^{\iota}\pi_2(\psi)$, φ_1 is the σ -weakly continuous part of φ and φ_2 the singular part of φ respectively. Then we have

$$\langle x^*x, \varphi \rangle = \langle \pi(x^*x), \psi \rangle \neq 0$$

for every non-zero $x \in \mathbf{M}$ by the faithfulness of π and ψ , so that φ is faithful on \mathbf{M} . Hence φ_1 is faithful and there exists a projection e of \mathbf{M} such that $\langle e, \varphi_2 \rangle = 0$ by Theorem 1, which imply that π_1 is faithful and $\pi_2(e)=0$. Therefore π coincides with π_1 on $e\mathbf{M}e$, so that π is σ -weakly continuous on $e\mathbf{M}e$. This concludes the proof.

References

- [1] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Paris (1957).
- [2] M. Nakamura: A proof of a theorem of Takesaki, Ködai Math. Sem. Rep., 10, 189-190 (1958).
- [3] M. Takesaki: On the conjugate space of operator algebra, Tôhoku Math. Jour., 10, 194-203 (1958).
- [4] J. Tomiyama: On the projection of norm one in W*-algebra, III, Tôhoku Math. Jour., 11, 125-129 (1959).
- [5] K. Yosida and E. Hewitt: Finite additive measures, Trans. Amer. Math. Soc., 72, 46-66 (1952).