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In the previous paper 3, we have introduced the notion of a
singular linear functional on W*-algebra M as follows: a positive
linear functional on M is called singular if there exists no non-zero
a-weakly continuous positive linear functional such as (p. This
notion is corresponding to the one of purely finite additive measure
in the abelian case of Yosida-Hewitt 5. And we have proved the
decomposition theorem of positive linear functional on M, whose another
proof was given by Nakamura in _2J, as follows: Any positive linear

functional on M is uniquely decomposed into the sum of a-weakly
continuous positive linear functional and singular one . And

if is singular, then is so on pMp for every non-zero projection
p of M. Moreover, suppose M, is the space of all a-weakly continuous
linear functionals on M and M, the space of all linear combinations
of singular positive linear functionals, we have proved the following
decomposition of the conjugate space M* of M" M* M, M, where

means the l-direct sum of its summands. This decomposition of
the conjugate space implies that of a uniformly continuous mapping
which proved by Tomiyama [4 as follows: Let . be a uniformly
continuous linear mapping from M into another W*-algebra N, then
there exist unique two linear mappings and m. of M into N such
that :-+m., is a-weakly continuous and tm.(N,)M, where
means the transpose of . And according to being a homomorphism,
positive or *-preserving, and m. are homomorphisms, positive or
*-preserving respectively. Hence a linear functional on M and a
linear mapping from M into another W*-algebra N are called
singular if eM, and tz(N,)M,, respectively.

This note is devoted to give a characterization of the singularity
of a positive linear functional on M and a short alternative proof of
Theorem 6 in 3J.

Theorem 1. Let M be a W*-algebra and a positive linear
functional on M. Then a necessary and sucient condition that
is singular is that for any non-zero projection e, there exists a non-
zero projection fe such as (f, (}-0.

Proof. Suppose F is not singular, the a-weakly continuous part
F of is not zero by Theorem 3 in [3. Let e be the carrier pro-
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jection of , then is faithful on eMe. Hence the inequality
implies the faithfulness of 9 on eMe.

Next suppose 9 is singular and e any fixed projection of M. Take
a a-weakly continuous positive linear functional such as (e, (} < (e, }.
The family . of all projections p of M such as pe and (p, 9}(P,
is an inductive set relative to the natural ordering. In fact, if {p}
is a totally ordered subfamily of , we put p-sup p. Then (p,
=>sup (p, 9}:>sup(P, } (p, }, so that p belongs to . Therefore
there exists a maximal projection P0 of ff by Zorn’s lemma. Putting
f=e-po, we have f0 by the hypothesis for . Moreover the
maximality of’p0 implies (q, 9}< (q, } for every non-zero projection
qf, so that we have 9< on fMf by the usual spectral theorem.
Therefore 9 is a-weakly continuous on fMf, so that 9 vanishes on

fMf by the singularity of 9. This concludes the proof.
This theorem is clearly equivalent to Theorem 4 of [3 in the

abelian case. Moreover, using this characterization of the singularity,
we can directly conclude Theorem 6 of [3 without using a maximal
abelian subalgebra. That is,

Theorem 2. Let M and N be two a-finite W*-algebras and r a

faithful positive linear mapping from M into N, then there exists
a non-zero projection e of M such that is a-weakly continuous on
eMe. And the a-weakly continuous part z of is faithful on Mand
the singular part of not faithful on M.

Proof. There exists a faithful a-weakly continuous positive linear
functional on N by the a-finiteness of N. Putting =(), (=t()
and __t(), is the a-weakly continuous part of and the
singular part of respectively. Then we have

for every non-zero xeM by the faithfulness of = and , so that is
faithful on M. Hence is faithful and there exists a projection e
of M such that (e, }=0 by Theorem 1, which imply that = is faithful
and (e)=O. Therefore z coincides with on eMe, so that is
weakly continuous on eMe. This concludes the proof.
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