81. On the Singularity of a Positive Linear Functional on Operator Algebra

By Masamichi Takesaki
Department of Mathematics, Tokyo Institute of Technology (Comm. by K. Kunugi, m.J.A., July 13, 1959)

In the previous paper [3], we have introduced the notion of a singular linear functional on W^{*}-algebra \boldsymbol{M} as follows: a positive linear functional φ on \boldsymbol{M} is called singular if there exists no non-zero σ-weakly continuous positive linear functional ψ such as $\psi \leqq \varphi$. This notion is corresponding to the one of purely finite additive measure in the abelian case of Yosida-Hewitt [5]. And we have proved the decomposition theorem of positive linear functional on \boldsymbol{M}, whose another proof was given by Nakamura in [2], as follows: Any positive linear functional φ on \boldsymbol{M} is uniquely decomposed into the sum of σ-weakly continuous positive linear functional φ_{1} and singular one φ_{2}. And if φ is singular, then φ is so on $p \boldsymbol{M}$ for every non-zero projection p of \boldsymbol{M}. Moreover, suppose \boldsymbol{M}_{*} is the space of all σ-weakly continuous linear functionals on \boldsymbol{M} and $\boldsymbol{M}_{\underset{*}{\perp}}$ the space of all linear combinations of singular positive linear functionals, we have proved the following decomposition of the conjugate space \boldsymbol{M}^{*} of $\boldsymbol{M}: \boldsymbol{M}^{*}=\boldsymbol{M}_{*} \oplus_{l^{1}} \boldsymbol{M}_{*}^{\perp}$ where $\oplus_{l^{1}}$ means the l^{1}-direct sum of its summands. This decomposition of the conjugate space implies that of a uniformly continuous mapping which proved by Tomiyama [4] as follows: Let π be a uniformly continuous linear mapping from \boldsymbol{M} into another W^{*}-algebra \boldsymbol{N}, then there exist unique two linear mappings π_{1} and π_{2} of \boldsymbol{M} into \boldsymbol{N} such that $\pi=\pi_{1}+\pi_{2}, \pi_{1}$ is σ-weakly continuous and ${ }^{t} \pi_{2}\left(\boldsymbol{N}_{*}\right) \subset \boldsymbol{M}_{*}^{\perp}$ where ${ }^{t} \pi_{2}$ means the transpose of π_{2}. And according to π being a homomorphism, positive or ${ }^{*}$-preserving, π_{1} and π_{2} are homomorphisms, positive or *-preserving respectively. Hence a linear functional φ on M and a linear mapping π from \boldsymbol{M} into another W^{*}-algebra \boldsymbol{N} are called singular if $\varphi \in \boldsymbol{M}_{*}^{\perp}$ and ${ }^{t} \pi\left(\boldsymbol{N}_{*}\right) \subset \boldsymbol{M}^{\perp}$, respectively.

This note is devoted to give a characterization of the singularity of a positive linear functional on \boldsymbol{M} and a short alternative proof of Theorem 6 in [3].

Theorem 1. Let \boldsymbol{M} be a W^{*}-algebra and φ a positive linear functional on \boldsymbol{M}. Then a necessary and sufficient condition that φ is singular is that for any non-zero projection e, there exists a nonzero projection $f \leqq e$ such as $\langle f, \varphi\rangle=0$.

Proof. Suppose φ is not singular, the σ-weakly continuous part φ_{1} of φ is not zero by Theorem 3 in [3]. Let e be the carrier pro-
jection of φ_{1}, then φ_{1} is faithful on $e \boldsymbol{M e}$. Hence the inequality $\varphi \geqq \varphi_{1}$ implies the faithfulness of φ on $e M e$.

Next suppose φ is singular and e any fixed projection of \boldsymbol{M}. Take a σ-weakly continuous positive linear functional ψ such as $\langle e, \varphi\rangle\langle\langle e, \psi\rangle$. The family \mathcal{F} of all projections p of \boldsymbol{M} such as $p \leqq e$ and $\langle p, \varphi\rangle \geqq\langle p, \psi\rangle$ is an inductive set relative to the natural ordering. In fact, if $\left\{p_{\alpha}\right\}$ is a totally ordered subfamily of \mathscr{F}, we put $p=\sup _{\alpha} p_{\alpha}$. Then $\langle p, \varphi\rangle$ $\geqq \sup _{\alpha}\left\langle p_{\alpha}, \varphi\right\rangle \geqq \sup _{\alpha}\left\langle p_{\alpha}, \psi\right\rangle=\langle p, \psi\rangle$, so that p belongs to \mathcal{F}. Therefore there exists a maximal projection p_{0} of \mathscr{F} by Zorn's lemma. Putting $f=e-p_{0}$, we have $f \neq 0$ by the hypothesis for ψ. Moreover the maximality of ' p_{0} implies $\langle q, \varphi\rangle\langle\langle q, \psi\rangle$ for every non-zero projection $q \leqq f$, so that we have $\varphi<\psi$ on $f \boldsymbol{M} f$ by the usual spectral theorem. Therefore φ is σ-weakly continuous on $f \boldsymbol{M} f$, so that φ vanishes on $f \boldsymbol{M} f$ by the singularity of φ. This concludes the proof.

This theorem is clearly equivalent to Theorem 4 of [3] in the abelian case. Moreover, using this characterization of the singularity, we can directly conclude Theorem 6 of [3] without using a maximal abelian subalgebra. That is,

Theorem 2. Let \boldsymbol{M} and \boldsymbol{N} be two σ-finite W^{*}-algebras and π a faithful positive linear mapping from \boldsymbol{M} into \boldsymbol{N}, then there exists a non-zero projection e of \boldsymbol{M} such that π is σ-weakly continuous on eMe. And the σ-weakly continuous part π_{1} of π is faithful on \boldsymbol{M} and the singular part π_{2} of π not faithful on \boldsymbol{M}.

Proof. There exists a faithful σ-weakly continuous positive linear functional ψ on \boldsymbol{N} by the σ-finiteness of \boldsymbol{N}. Putting $\varphi={ }^{t} \pi(\psi), \varphi_{1}={ }^{t} \pi_{1}(\psi)$ and $\varphi_{2}={ }^{t} \pi_{2}(\psi), \varphi_{1}$ is the σ-weakly continuous part of φ and φ_{2} the singular part of φ respectively. Then we have

$$
\left\langle x^{*} x, \varphi\right\rangle=\left\langle\pi\left(x^{*} x\right), \psi\right\rangle \neq 0
$$

for every non-zero $x \in \boldsymbol{M}$ by the faithfulness of π and ψ, so that φ is faithful on \boldsymbol{M}. Hence φ_{1} is faithful and there exists a projection e of \boldsymbol{M} such that $\left\langle e, \varphi_{2}\right\rangle=0$ by Theorem 1 , which imply that π_{1} is faithful and $\pi_{2}(e)=0$. Therefore π coincides with π_{1} on $e M e$, so that π is σ weakly continuous on $e \mathbf{M e}$. This concludes the proof.

References

[1] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Paris (1957).
[2] M. Nakamura: A proof of a theorem of Takesaki, Ködai Math. Sem. Rep., 10, 189-190 (1958).
[3] M. Takesaki: On the conjugate space of operator algebra, Tôhoku Math. Jour., 10, 194-203 (1958).
[4] J. Tomiyama: On the projection of norm one in W^{*}-algebra, III, Tôhoku Math. Jour., 11, 125-129 (1959).
[5] K. Yosida and E. Hewitt: Finite additive measures, Trans. Amer. Math. Soc., 72, 46-66 (1952).

