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79. On Fatou’s Theorem

By Teruo IKEGAMI
(Comm. by K. KUNUGI, M.J.A., July 13, 1959)

1. As one of the classical theorems in the theory of functions,
the following Fatou’s theorem is well known:

"If f(z) is regular and bounded in the unit circle, then at almost
all points of the unit circle the boundary values of f(z) exist".

It seems to me that the proof, due to Carathodory, is based on
the fact that the boundary value is a differential coefficient of a
function which satisfies "Lipschitz condition ". In this paper we shall
get into an argument so that the boundary value should be a differential
coefficient of a function VBG..1

2. After this, we shall consider the function f(z), one-valued
regular in the unit circle: z !< 1. First of all, we pose the following
condition (A):

(A) on the unit circle C:iz !-1, there exists a closed set N such
that

mes. N---0
(ii) sup If(read)I< for OC--N.

Proposition 1. Under the condition (A), if we set

foF(p, 0)-- f(pe)df 0o,N 0g p< 1,
Po

then for every 8eCN there exists the limit:
lim F(p,

Proof. As is easily seen, we can se f(0)=0, and suppose that
there exists a sequence of sets {En}, such that

E -C-N,

(2 if OeE then sup’’
(3 O=OeE (N).

We shall set A=p, B=p+&p, C:pe
then

F(p+ &p, O)--F(p, 0)-- {(p+

f(z) dz

1)- Cf.-S.---Sas:- The0ryof the--in/eraL
2) rues. N means the measure of the set N.
3) C-N={o: oeC, o, N}.
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as f(z)/z is regular in ]zl<l,
f(z) dz+ ) dz+ f(z)
SZ SZ

therefore

o)--r(p, 0)--f’f(z).dz+faf(z)-dz,----F(pAp,
y--zz iz

where the curvilinear integrals should be calculated along the radius
from A to B, from C to D, and along the arc from B to D, from C
to A. If O eEn, by (2

F(p+ Ap, O)--F(p, 0)] 2(n0+n).
Therefore if O eEn, there exists uniformly lim F(p, 0). Q.E.D.

If we define
m F(p, O) eC--N

F(O)--
0 OeN

the finite function on C is defined.
Next, we shall set the following condition (B):
(B) F(, p)d are equi-absolutely eontinuous integrals, i.e. for

every s>0 there exists >0, independently of r, such that for every
non-overlapping intervals {I= [a, b}, (k=l, 2,.-., k0) the inequality

b--a !< c implies ,__ F(r, .)dp < s.

Popoitio 2. Uder the eogitio (A), (B), F(O) i mmable
and

(,) lim IF(p, )-F() d-0.

Proof. First we shall show, for every >0 there exists >0, such
that if E is a measurable set and mes. E< then independently of r
we get

In fact, from (B) we can select >0, such that for every sequence of non-

overlapping intervals {I} which satisfies mes. I<, the inequalities
k=l

llF(r,)d[<_s/2 hold independently of r. Let a measurable set E
k=l

be mes. E. Then for every ]>0 there exists a sequence of non-

overlapping intervals {J} such that G=, J
_

E, mes. J< mes.
k=l k=l

E+;. Now we select ;, 0<;<Min [e/2Mr, --mes. E_], where Mr denotes
sup IF(r, )[. Then,

E Jk
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Next, let F(r, o), F.(r, ) be the real and imaginary parts of F(v, o). If
we apply the above fact, for e/4, to F(v, o), there exists >0 such
that if E is a measurable set and mes. E<, then independently of r,

hold. We shall denote for every r
E’-{o" oE, F(r, o)_>0}, E’’--{" eE, F(r,

then E= E’4-E and

r r
Therefore f ]F(r, o)]do <_ e/4+e/4- /2.

Similarly ; IF,.(r, o) ldog/2 and finally ;IF(r, o) d<_ hold in-

dependently of r.
In particular, there exists >0 and if the interval I is of mes. I<,

then independently of r, we get ; IF(r, o)]do_<l. On the other hand,
I

IF(r, o) tend to ]F(o)] almost everywhere. Therefore by Fatou’s lemma
F(t)i is a summable function on /, consequently F(0) is summable
on C.

Given any >0, we can find >0, such that mes. E< implies

f]F(r, )ld<e/3 (independently of r)

and

f F()! d< s/3.

If we set A(a)--{’l F(r ?)--F() ]_>a}, B(o)--{o:l F(r,)--F() ]<a},
for 0<a<s/6u. There exists >0 by Proposition 1, such that
0 < 1--r< V implies rues. A(a)< 3.

Then F(, )-F() dF<_ _fi F(r, )--F() d+2ua
Ar(a

f r(r,)ld+f 1F()ld+/3.
At(a) Ar(a)

If 1--r<v two terms of the last are less than e/3. Therefore we
get the result (,). Q.E.D.

We can see that the condition (B) is, in a sense, the best to get
the result (.), i.e. the condition (B) is equivalent to the result (.).
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we get

1 f:r(v) d( 1--r" )f(re) d?2-7-, 1--2r cos (9--0)+r
Proof

1 ; ,o-rf(re)-,,, f(Pe)
p--2pr cos (?--O)+r

dF (Ogr< p< 1)

dg.o -2cos (-e)+J

and f(0)- 0,

For brevity we shall write

P (r, p; 0, 9)--

then

(0_<r<l).

We denote these two integrals on the right by I, , and select

0<]<. If 1--p<], then
2

therefore

we know

and

and p-> 1 implies Ll->o. Similarly
d d P(r, 1;O,7P(’ ; 0, )- d-

where K is a constant. If we set

[F(9)[g9 M,

I <_K. M(1-- p),
implies I.]--> O.

I, i__< {2(1--r)/( 1--,)’}f=2
IF(P’

O<l--p<]

Consequently we get I1+I2-0. Q.E.D.
Finally we set up rather complicated condition (C):
(C) there exists a sequence of the subsets of C, {G}, and a sequence

of numbers {m} such that

(i)

--P--r (0 _< r < p< 1),p--2pr cos
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( ii independently of p, V,(F(p, 0), G)
Proposition 4. Under the conditions (A), (C), F(0) is VBG. on

C-N, therefore F(O) is derivable at almost all points of C.
Proof. As N is a closed set, there exists a sequence of open

intervals [I} such that C-N=
k--1

then C--N- , G.. We shall show F(t) is VB. on each set Gn,. Let

J= [a, fl, k= 1, 2,..., k0 be non-overlapping subintervals of I whose
end-points belong to Gn. For every J we select arbitrary subinterval of
J, that is L [y, ]. For y, 6 N, if we select p sufficiently near to 1

]F(y)--F(p, y)[+lF()--F(p,)l’<l/ko (k--l, 2,..., ko),
therefore

ko ko, IF(rk)--F(k)]_ ff {iF(yk)--F(P, y)i+]F()--F(p, k)]}
k--1 k=l

ko k0

k=l

k0
Then we get , O(F(0); J) m-- 1.

As {J} is arbitrary, we know
V.(F(t?); Gn,) __<m+ 1< . Q.E.D.

4. If a function f(z), defined in the unit circle, has the following
property we shall call "f(z) has Fatou’s property": on the unit circle
C there exists a set N whose measure is zero, and if O eC--N then

lim f(z)

exists, where z--> e means that z converges to e non-tangentially to C.
Now we can state the main result in the following theorem.
Theorem. If f(z) satisfies the conditions (A), (B) and (C), then

f(z) has Fatou’s property.
By the aid of Propositions 3, 4, the proof of above theorem could

be carried out quite similarly to the classical Carathodory’s proof.
For example, a short verification would make clear that the

function
Z

log n

satisfies the conditions (A), (B) and (C).

4)---. S. Saks" Loc. cit. In this paper, we shall say that a complex-valued
function is of bounded variation on a set E, if its real and imaginary parts are of
bounded variation on E.

5) O(F(0; I)=s.u,p F(J)I where J is a subinterval of L


