75. On Ring Homomorphisms of a Ring of Continuous Functions. II

By Takesi ISIWATA Tokyo Gakugei University, Tokyo (Comm. by K. KUNUGI, M.J.A., July 13, 1959)

Anderson and Blair [1] have investigated representations of certain rings as subalgebras of C(X).¹⁾ In this paper, we shall in §1 also consider such representations of certain rings and we shall improve Theorems 2.2 and 3.2 in [1] using results obtained in [2,3]. From results in §1, we obtain in §2 new characterizations of locally Qcomplete spaces, Q-spaces, locally compact spaces and compact spaces.

Let R be a ring of all real numbers. A subset A of C(X) is said, according to $\lceil 1 \rceil$, to be weakly pseudoregular if X has a subbase \mathfrak{l} of open sets such that for any $U \in \mathfrak{l}$ and $x \in U$ there are an $\alpha > 0$ (in R) and an f in A such that $|f(x)-f(y)| > \alpha$ for $y \notin U$. A is pseudoregular²⁾ if for any $x \in X$ and any open neighborhood U of x, there is an $f \in A$ such that f(x) = 0 and $f(y) \ge 1$ for $y \notin U$. An element f in A is said to be strictly positive if there exists an $\alpha > 0$ (in R) such that $f(x) \ge \alpha$ for every $x \in X$. Next suppose that A is an arbitrary algebra over R. A maximal ideal M of A is said to be real if the residue class algebra A/M is isomorphic to R. \Re_A denotes the totality of real maximal ideals of A. An element f in A is said to be strictly positive if there exists $\alpha > 0$ (in R) such that $M(f) \ge \alpha$ for every $M \in \mathfrak{N}_A$ where $M(f) = f \mod M$. Let us put $S(f) = \{M(f); M \in \mathfrak{R}_A\}$ which is called a spectrum of f. If A is a subset of C(X), and for any $M \in \Re_A$, there is a unique point x in X such that $M = M_x = \{f; f(x)\}$ =0 then A is said to be point-determining; in other words, A has the property (H^*) in [3], that is, any ring homomorphism φ of A onto R is a point ring homomorphism φ_x and $x \neq y$ implies $\varphi_x \neq \varphi_y$.

1. Now suppose that A is a ring such that $\Re_A \neq 0$ and $\bigcap_{M \in \Re_A} M = \theta$ (written $\Re_A = \theta$). We define a function f^* an \Re_A by $f^*(M) = M(f)$, moreover, introduce a weak topology on \Re_A , that is, we take as a subbase of open sets of \Re_A , $\mathfrak{ll} = \{U_M(f, \varepsilon); f \in A, \varepsilon \in R, \varepsilon > 0\}$ where $U_M(f, \varepsilon) = \{N; |M(f) - N(f)| < \varepsilon, N \in \Re_A\}$. Then, by [1, Theorem 2.1], for any given X, a weakly pseudoregular point-determining subring A of C(X)

¹⁾ In the following, X is always a completely regular T_1 -space and other terminologies used here, for instance C(X), ring homomorphisms and local Q-completeness, are the same as in [2, 3].

²⁾ The definition of pseudoregular in [1] requires moreover that A contains a constant function e which takes value 1 on X.

characterizes X, i.e. X is homeomorphic to \Re_A with the weak topology. Moreover, by [1, Theorem 2.2], and arbitrary ring A is isomorphic to a weakly pseudoregular point-determining subring A^* of C(X), for some topologically unique completely regular space X, if and only if $\frown \Re_A = \theta$. In this case X is a space \Re_A with the weak topology and A is isomorphic to A^* by the correspondence $f \rightarrow f^*$.

LEMMA 1. A subalgebra (=a linear subring) of C(X) generates a structure of X if and only if A is weakly pseudoregular.

Proof is obvious.

The existence of weakly pseudoregular point-determining subring A of C(X) does not necessarily imply that X is a Q-space (see Example 1 in [1]). Moreover, even if A is a subalgebra, X is not necessarily a Q-space. Such an example is given by $C_B(X)$ where X is locally Q-complete and B is a compact subset of $\beta X - X$ containing $\nu X - X$ (see Theorem 1 in [2]). But by Theorem 1 and Corollary 3 in [2] and Theorem 2.2 in [1] we have

THEOREM 1. An algebra A is isomorphic to a weakly pseudoregular point-determining subalgebra of C(X) for some topologically unique locally Q-complete space X if and only if $\frown \Re_A = \theta$.

Next we improve Lemma 3.1 in [1] using the same method used as in the proof of (2) in [3].

LEMMA 2. If A is a point-determining weakly pseudoregular subalgebra of C(X) which has a strictly positive function, then X is a Q-space.

Proof. Suppose that $\nu X - X \neq \theta$. For any point $y \in \nu X - X \varphi_y(f) = \tilde{f}(y)$ for $f \in A$ is a ring homomorphism of A into R where \tilde{f} denotes a continuous extension of f over νX . If $\varphi_y(A) \neq 0$ then, since A is linear, $\varphi_y(A) = R$. Therefore there is a point x in X such that $\varphi_x = \varphi_y$. But this leads to a contradiction by the same method used as in (2) in [3]. Thus we have that $\varphi_y(A)=0$ for any point y in $\nu X - X$. Moreover, this means that X is open in νX and that any function in A vanishes on $\nu X - X$. Now let $x \in X$ and U be an open subset containing x such that $\overline{U}(\text{in } \nu X) \frown (\nu X - X) = \theta$. By the assumption, there is a strictly positive function $f \ge \alpha$ for some $\alpha > 0$. Then $\tilde{f} \ge \alpha$ on $\nu X - X$. This is a contradiction. Thus X must be a Q-space.

LEMMA 3. If A is pseudoregular subring of C(X), then A contains a strictly positive function.

Proof. Let x and y be two distinct points and let U and V be disjoint open neighborhoods of x and y respectively. By the pseudo-regularity, there are f and g such that f(x)=0, $f(X-U)\ge 1$ and g(y)=0, $g(X-V)\ge 1$. Then f^2+g^2 belongs to A and takes a value not smaller than 1 on X, that is, A contains a strictly positive function.

No. 7] On Ring Homomorphisms of a Ring of Continuous Functions. II 337

Thus we have

THEOREM 2. An algebra A is isomorphic to a weakly pseudoregular point-determining subalgera of C(X), with some strictly positive function, for some topologically unique Q-space if and only if $\frown \Re_A = \theta$ and A has a strictly positive function.

From Lemma 3 and Theorem 2 we have

COROLLARY. If C(X) has a pseudoregular point-determining subalgebra, then X is a Q-space.

2. Let PA(X) be the totality of weakly pseudoregular pointdetermining subalgebras of C(X). Since $\frown \Re_A = \theta$ for any $A \in PA(X)$ and A is weakly pseudoregular, by Theorem 1 X must be locally Qcomplete. If A contains a strictly positive function, then by Theorem 2 X must be a Q-space. Conversely if X is a Q-space, it is well known that C(X) belongs to PA(X) and contains, of course, strictly positive functions.

Next suppose that X is compact and $A \in PA(X)$. For any point x, there is a function $f_x \in A$ such that $f_x(x) \neq 0$. Then $\mathfrak{U} = \{ U(x, f_x^2, \varepsilon_x) ;$ $x \in X$ } becomes an open covering of X where $U(x, f_x^2, \varepsilon_x) = \{y; | f_x^2(x)\}$ $-f_x^2(y)|<\varepsilon_x\}$ and $f_x^2(x)>2\varepsilon_x>0$. By the compactness of X, there is a subcovering $\{U(x_i, f_{x_i}^3, \varepsilon_{x_i}); i=1, 2, \dots, n\}$ of \mathfrak{U} . Then $g = \sum_{i=1}^n \frac{1}{\varepsilon} f_{x_i}^3$ belongs to A and $g \ge 1$ on X where $\varepsilon = \min(\varepsilon_{x_1}, \dots, \varepsilon_{x_n})$. Therefore any A belonging to PA(X) has a strictly positive function. Conversely, suppose that X is not compact. X is locally Q-complete by Theorem 1. Let B be a compact subset contained in $\beta X - X$ which i) in case X is not a Q-space, B is compact subset containing $\lambda X - X$, ii) in case X is a Q-space, B is any compact subset. Then by [2, Theorem 1] $C_{B}(X)$ is a point-determining subalgebra of C(X), and any function f in $C_B(X)$ has a continuous extension f over B on which f=0. This implies that $C_B(X)$ has no strictly positive functions. Thus we have the following

THEOREM 3. Let X be a completely regular T_1 -space; then 1) X is locally Q-complete if and only if $PA(X) \neq \theta$, 2) X is a Q-space if and only if $PA(X) \neq \theta$ and some subalgebra belonging to PA(X) has a strictly positive function, 3) X is compact if and only if $PA(X) \neq \theta$ and every subalgebra belonging to PA(X) contains a strictly positive function.

REMARK. Suppose that A belongs to PA(X) and S(f) is bounded for every $f \in A$. Then, in the arguments in §§ 1-2, we can replace νX by βX and we have the results that local Q-completeness and Qspace are replaced, in Theorems 1, 2 and Corollary, local compactness and compact space respectively.

Let PI(X) be the totality of ideals of C(X) which belongs to

PA(X). If $PA(X) \neq \theta$, i.e. X is locally Q-complete, then $PI(A) \neq \theta$. For, i) in case X is a Q-space, $C(X) \in PI(X)$, ii) in case X is not a Q-space, $C_B(X) \in PI(A)$ where $B = (\nu X - X)^{\beta}$.

Suppose that A belongs to PI(A) and contains a strictly positive function, then it is easy to see that A=C(X) because A is an ideal of C(X). This shows that if X is compact, then PI(X) consists of only one element C(X). If X is not compact and some $A \in PI(X)$ contains a strictly positive function, then A=C(X) and this implies that X is a Q-space. If X is a Q-space, $C_B(X)$ belongs to PI(A) where $B=\{b\}$ and b is any point in $\beta X - X$. On the other hand, a pseudo-compact Q-space is compact and if Y is not pseudo-compact, $\overline{(\beta Y - Y)} \ge 2^{\aleph_0}$ where $\overline{\overline{Y}}$ denotes the cardinal number of Y and \aleph_0 denotes the cardinal number of a set of all integers. Therefore if X is a Q-space and not compact, $\overline{\overline{PI(X)}} \ge 2^{\aleph_0}$ and $C(X) \in PI(X)$.

Next we shall consider the converse. Suppose that PI(X) consists of only one element C(X). By the result obtained by Hewitt, X is a Q-space. If X is not compact, $\overline{PI(X)} \ge 2^{\aleph_0}$, and hence X must be compact. Next suppose that $C(X) \in PI(X)$ and $\overline{\overline{PI(X)}} \ge 2^{\aleph_0}$. Then X is a Q-space and X is not pseudo-compact, thus X is a Q-space and not compact.

If $PI(X) \ni A$ and $A \neq C(X)$, then $Z(f) \neq \theta$ for any $f \in A$, and we have $\Delta(A) = \bigcap_{f \in A} Z(f)^{\beta} \neq \theta$ because A is an ideal of C(X). Since A is point-determining, it is obvious that $\Delta(A) \supset (\nu X - X)^{\beta}$ (if there exists). We shall prove that if X is locally compact, $C_k(X)$ is the smallest ideal belonging to PI(X). To prove this, it suffices to show that any $f \in C_k(X)$ is contained in A for any $A \in PI(X)$. Since the support Fof f is compact and A is point-determining, there is a function g_x in A for each $x \in F$ which is positive on some open neighborhood of x. By the compactness of F, there is a function g in A which takes value greater than 1 on F because A is an ideal. Then $h=g^2/\max(g^2, 1)$ belongs to A and h(F)=1. By the method of construction of h, we have hf=f, and hence $f \in A$.

Conversely suppose that X is not locally compact and A_0 is the smallest ideal belonging to PI(X). If $A_1, A_2 \in PI(X)$ and $A_1 \subset A_2$, then it is obvious that $\mathcal{L}(A_1) \supset \mathcal{L}(A_2)$. Thus for any $A \in PI(X)$, we have $\mathcal{L}(A_0) \supset \mathcal{L}(A)$ and $\mathcal{L}(A_0)$ is a compact subset in $\beta X - X$. Since $\beta X - X$ is not compact, there is a point b in $(\beta X - X) - \mathcal{L}(A_0)$ and $C_B(X)$ is not contained in A_0 where $B = \mathcal{L}(A_0) \cup \{b\}$. Thus we have

THEOREM 4. Let X be a completely regular T_1 -space.

- 1) X is locally Q-complete if and only if $PI(X) \neq \theta$,
- 2) X is compact if and only if PI(X) consists of only one element C(X),

3) X is a Q-space but not compact if and only if $PI(X) \ni C(X)$ and $\overline{PI(X)} \ge 2^{\aleph_0}$,

4) X is locally compact if and only if PI(X) has the smallest ideal.

References

- F. W. Anderson and R. Blair: Characterizations of the algebra of all realvalued continuous functions on a completely regular space, Illinois Jour. Math., 3, 121-131 (1959).
- [2] T. Isiwata: On locally Q-complete spaces. II, Proc. Japan Acad., 35, 263-267 (1959).
- [3] T. Isiwata: On ring homomorphisms of a ring of continuous functions, Proc. Japan Acad., 35, 268-272 (1959).