74. On Compact Semirings

By Samuel BOURNE University of California (Comm. by K. KUNUGI, M.J.A., July 13, 1959)

1. Introduction. In this paper we generalize to the infinite case our theorem that a finite semiring without zeroid is a ring [1]. We prove the natural extension that a compact semiring without zeroid is a ring. As a by-product, we obtain a generalization for the commutative case of Numakura's theorem that a compact semigroup satisfying the cancellation law is a group [4] to a compact abelian semigroup without zeroid is a group.

I. Kaplansky [2] has given structure theorems for compact rings. He proved that a compact semi-simple ring is isomorphic and homeomorphic to a Cartesian direct sum of finite simple rings [2]. Hence, this structure theorem remains true for a compact semi-simple semiring.

Only semirings with commutative addition and a zero, in the sense of Vandiver and Weaver [5], are considered. This paper has benefited materially from discussion with H. Zassenhaus of the University of Notre Dame.

2 Quotient spaces. Definition 1. A topological semiring is a semiring S together with a Hausdorff topology on S under which the semiring operations are continuous. Since the zeroid of a semiring will play an important role in what follows, we repeat its definition.

Definition 2. The zeroid Z(S) of a semiring S is the set of elements z of S for which the equation z+x=x is solvable in S.

In a previous paper [1] we defined two elements i_1, i_2 of a semiring S to be equivalent if the equation $i_1+x=i_2+x$ is solvable in S. These equivalence classes i^* represented by $i \in S$ form a semiring S^* with cancellation law of addition, according to the laws $i_1^*+i_2^*=(i_1+i_2)^*$, $i_1^*i_2^*=(i_1i_2)^*$. S^* is then a halfring [6]. The zeroid consists of all elements z of S for which $z^*=0$, i.e. the zeroid of S is the inverse image of the O-element of S^* under the homeomorphism $i \to i^*$ of S onto S^* .

We introduce in S^* the quotient topology, that is the largest topology for S^* such that the function $i \rightarrow i^*$ is a continuous mapping of S onto S^* . We assume that S is a compact space. Then S^* is also compact space, for the function $i \rightarrow i^*$ is a continuous mapping of S onto S^* [3].

LEMMA 1. The compact space S^* is Hausdorff. Proof. We recall the following theorems: Let X be a topological space, let \mathfrak{D} be an upper semi-continuous decomposition of X whose members are compact and let \mathfrak{D} have the quotient topology. Then \mathfrak{D} is Hausdorff, provided X is Hausdorff [3].

A decomposition \mathbb{D} of a topological space X is upper semi-continuous if and only if the projection P of X onto \mathbb{D} is closed [3].

We prove that the projection (quotient map) $i \rightarrow i^*$ is closed, that is the image of each closed set is closed. Let A be a closed subset of S and A^* its image. We show that A^* is closed subset of S^* . Since S^* is a quotient space of S this is equivalent to proving that the set \widehat{A} of all elements y of S, such that $y^* \in A^*$, is a closed subset of S. Since a compact subset of a Hausdorff space is closed, it is sufficient to prove that \hat{A} is a compact subset of S. We recall that a topological space X is compact if and only if each net in X has a subnet which converges to some point of X[3]. Hence, we wish to show that the net $\{y_n\}$ in \widehat{A} has a subnet which converges to some point of \widehat{A} . There exist x_n , such that $y_n^* = x_n^*$, that is $y_n + z_n = x_n + z_n$, $x_n \in A$ and $z_n \in S$. Since A is a closed subset of S, it is a compact subset of S. Hence, the net $\{x_n\}$ has a subnet $\{x_{\nu_n}\}$ which converges to some point x of A. Similarly the net $\{z_{\nu_n}\}$ possesses a subnet $\{z_{\rho_n}\}$ which converges to some point z of S. Hence, there exists a convergent subnet $\{y_{\sigma_n}\}$ of the net $\{y_{r_n}\}$ such that $y_{\sigma_n}+z_{\sigma_n}=x_{\sigma_n}+z_{\sigma_n}$, where $\lim x_{\sigma_n}=x$ and $\lim z_{\sigma_n}=z$. Because of the continuity of addition, $\lim y_{\sigma_n}+\lim z_{\sigma_n}=\lim x_{\sigma_n}+\lim z_{\sigma_n}$, y+z=x+z and $y\in \hat{A}$. This implies that \hat{A} is a compact subset of the Hausdorff space S and consequently a closed subset of S. The mapping $i \rightarrow i^*$ is upper semi-continuous.

Since $\{i\}$ is closed, S being a T_1 -space, it follows that its image $\{i^*\}$ is also closed in S^* and the inverse image of $\{i^*\}$ is a closed subset of S and therefore a compact subset of S. The members of the decomposition of S are compact. Since S is Hausdorff, then also S^* is Hausdorff.

LEMMA 2. The compact halfring S^* is a compact ring.

Proof. The additive semigroup of S^* is a compact semigroup satisfying the cancellation law and hence is group by Numakura's theorem [4]. S^* is a compact ring.

LEMMA 3. If S is a compact semiring without zeroid then S is a compact ring.

Proof. Lemma 2 states that S^* is a ring. Hence, for any $x \in S$, $x^*+y^*=0^*$ is soluble in S^* and $(x+y)^*=0^*$. Since the zeroid Z(S)=0, this implies that x+y=0 and S is a ring.

As an immediate consequence of Lemma 3, we have

THEOREM 1. A compact semimodule without zeroid is a module. This theorem is a generalization for the commutative case of S. BOURNE

Numakura's theorem [4], stated in the introduction.

If S is semi-simple, its semiradical is zero. In our previous paper [1], we showed that the zeroid Z(S) is a two-sided ideal contained in the semiradical. Hence Z(S)=0 and we have the Kaplansky result [2] for semirings.

THEOREM 2. A compact semi-simple semiring is isomorphic and homeomorphic to a Cartesian direct sum of finite simple rings.

References

- S. Bourne and H. Zassenhaus: On the semiradical of a semiring, Proc. Nat. Acad. Sci., U. S. A., 44, 907-914 (1958).
- [2] I. Kaplansky: Topological rings, Am. Jour. Math., 69, 153-183 (1947).
- [3] J. L. Kelley: General Topology, New York, Van Nostrand (1955).
- [4] K. Numakura: On bicompact semigroups, Math. Jour. Okayama Univ., 1, 102 (1952).
- [5] H. S. Vandiver and M. W. Weaver: A development of associative algebra and an algebraic theory of numbers IV, Math. Mag., 30, 6 (1956).
- [6] H. Zassenhaus: The Theory of Groups, 2nd ed., New York, Chelsea, 95 (1958).

 $\mathbf{334}$