73. On the Unique Factorization Theorem in Regular Local Rings

By Masao Narita

International Christian University, Mitaka, Tokyo (Comm. by Z. Suetuna, M.J.A., July 13, 1959)

Recently Auslander and Buchsbaum [3] have proved that every regular local ring is a unique factorization ring. This proof depends upon the following result of Nagata [1]: If every regular local ring of dimension 3 is a unique factorization ring, then so is every regular local ring of any dimension (see [1, pp. 411-413]).

This theorem was proved independently by Zariski [2].

Nagata proved this theorem by using homological method and ideas. The purpose of this paper is to prove anew this theorem by a purely ideal-theoretic method in a simpler way than in [1] and [2].

Let \mathfrak{O} be an n dimensional regular local ring.

Let $\mathfrak{m}=\mathfrak{D}u_1+\mathfrak{D}u_2+\cdots+\mathfrak{D}u_n$ be the maximal ideal of \mathfrak{D} , and $\mathfrak{D}'=\mathfrak{D}[X_1,X_2,\cdots,X_n]$ be the polynomial ring over \mathfrak{D} . Then $\mathfrak{m}'=\mathfrak{m}[X_1,X_2,\cdots,X_n]$ is a prime ideal of \mathfrak{D}' . Let \mathfrak{D}^* be the quotient ring of \mathfrak{D}' with respect to \mathfrak{m}' , then \mathfrak{D}^* will be n dimensional regular local ring, and $\mathfrak{m}^*=\mathfrak{D}^*u_1+\mathfrak{D}^*u_2+\cdots+\mathfrak{D}^*u_n$ will be the maximal ideal of \mathfrak{D}^* . In the following, we shall use \mathfrak{a} , \mathfrak{b} , \mathfrak{p} , \mathfrak{q} , etc. to denote ideals in \mathfrak{D} , and \mathfrak{a}^* , \mathfrak{b}^* , \mathfrak{p}^* , \mathfrak{q}^* , etc. to denote ideals in \mathfrak{D}^* .

We note the following well-known lemma without proof (see, for example, [4]).

Lemma 1. We have

- (i) $\mathfrak{D}_{\frown}\mathfrak{D}^*\mathfrak{a} = \mathfrak{a}$.
- (ii) If \mathfrak{p} is a prime ideal in \mathfrak{D} , then so is $\mathfrak{D}^*\mathfrak{p}$ in \mathfrak{D}^* , and if \mathfrak{q} is \mathfrak{p} -primary, then $\mathfrak{D}^*\mathfrak{q}$ is $\mathfrak{D}^*\mathfrak{p}$ -primary. Moreover rank \mathfrak{p} =rank $\mathfrak{D}^*\mathfrak{p}$.

A less familiar lemma is:

Lemma 2. Let $v^* = u_1 X_1 + u_2 X_2 + \cdots + u_n X_n$, then v^* is an element of a minimal base of m^* . Moreover, $\mathfrak{D}^*\mathfrak{a} \ni v^*$ holds if and only if $\mathfrak{a} = \mathfrak{m}$.

Proof. From $\mathfrak{m}^* = \mathfrak{O}^* u_1 + \mathfrak{O}^* u_2 + \cdots + \mathfrak{O}^* u_n$ follows the equation $\mathfrak{m}^* = \mathfrak{O}^* v^* + \mathfrak{O}^* u_2 + \cdots + \mathfrak{O}^* u_n$. Therefore v^* is an element of a minimal base of \mathfrak{m}^* .

Since every element of $\mathbb{O}^*\mathfrak{a}$ can be expressed in the form P(x)/Q(x), $P(x) \in \mathfrak{a}[X_1, X_2, \dots, X_n]$, $Q(x) \notin \mathfrak{m}[X_1, X_2, \dots, X_n]$, $\mathbb{O}^*\mathfrak{a} \ni v^*$ implies that $\mathfrak{a}[X_1, X_2, \dots, X_n] \ni v^*$, this means $\mathfrak{a} \ni u_1, u_2, \dots, u_n$, and thereby completes the proof.

Now, let φ be a natural homomorphism of \mathbb{O}^* onto the regular local ring $\overline{\mathbb{O}} = \mathbb{O}^*/\mathbb{O}^*v^*$ of dimension n-1.

Lemma 3. Let $\mathbb D$ be a regular local ring of dimension $n \geq 3$, and let $\mathfrak a$ and $\mathfrak b$ be ideals of $\mathbb D$ with a condition rank $\mathfrak a = \operatorname{rank} \mathfrak b = 1$. Then, there exists a minimal prime ideal in $\mathbb D$ belonging to $\mathfrak a$ and $\mathfrak b$, if and only if there exists a minimal prime ideal in $\overline{\mathbb D}$ belonging to $\varphi(\mathbb D^*\mathfrak a)$ and $\varphi(\mathbb D^*\mathfrak b)$.

Proof. Necessity is evident. Suppose that there exists a minimal prime ideal \bar{p} which belongs to $\varphi(\mathfrak{D}^*\mathfrak{a})$ and $\varphi(\mathfrak{D}^*\mathfrak{b})$. From the assumption rank $\bar{p}=1$ follows rank $\varphi^{-1}(\bar{p})=2$. And we have $\varphi^{-1}(\bar{p})\supset \mathfrak{D}^*\mathfrak{a}$, $\mathfrak{D}^*\mathfrak{b}$. On the other hand, we have $\varphi^{-1}(\bar{p})\ni v^*$, this implies that rank $\mathfrak{D}_{\frown}\varphi^{-1}(\bar{p})=1$, from Lemma 2. This means that there exists a minimal prime ideal in \mathfrak{D} which belongs to \mathfrak{a} and \mathfrak{b} .

Theorem. If every regular local ring of dimension 3 is a unique factorization ring, then so is every regular local ring of any dimension.

Proof. If dim $\mathfrak{D}=1$ or 2, it is easy to prove that \mathfrak{D} is a unique factorization ring (see, for example, [1, Th. 4, p. 410]).

Therefore, for the purpose of the proof, we may assume that $\dim \mathfrak{D} > 3$, and may assume that every regular local ring of dimension less than $\dim \mathfrak{D}$ is a unique factorization ring. Let \mathfrak{p} be a prime ideal of rank 1 in \mathfrak{D} . Since $\mathfrak{p} \Leftrightarrow \mathfrak{p}^{(2)} + \mathfrak{p} \cdot \mathfrak{m}$ (where $\mathfrak{p}^{(2)}$ is the "symbolic square" of \mathfrak{p} , i.e. the \mathfrak{p} -primary component of \mathfrak{p}^2), there exists an element p_1 of \mathfrak{p} such that $p_1 \notin \mathfrak{p}^{(2)}$ and $p_1 \notin \mathfrak{p} \cdot \mathfrak{m}$. Assume that $\mathfrak{p} \neq \mathfrak{D} p_1$. We shall show that this implies a contradiction. It is well known that this completes the proof (see, for example, [1, Lemma 1, p. 408]).

Since $p_1 \notin \mathfrak{p}^{(2)}$, we have $\mathfrak{D}p_1 = \mathfrak{p}_{\frown}a$, where \mathfrak{a} is unmixed, of rank 1 and not contained in \mathfrak{p} . Since $\mathfrak{a}: \mathfrak{p} = \mathfrak{a}$, there exists an element p_2 of \mathfrak{p} such that $\mathfrak{a}: \mathfrak{D}p_2 = \mathfrak{a}$. By assumption, $\overline{\mathfrak{D}}(=\varphi(\mathfrak{D}^*))$ is a unique factorization ring, consequently we have $\varphi(p_1) = \overline{g}\,\overline{a}$, where \overline{g} and \overline{a} are such elements of $\overline{\mathfrak{D}}$ that $\mathfrak{D}^*\mathfrak{p} \subset \varphi^{-1}(\overline{\mathfrak{D}}\overline{g})$, $\mathfrak{D}^*\mathfrak{a} \subset \varphi^{-1}(\overline{\mathfrak{D}}\overline{a})$. By Lemma 3, \overline{g} and \overline{a} have no common prime element. Suppose that $\mathfrak{b} = \mathfrak{D}p_1 + \mathfrak{D}p_2$, and we shall prove that \mathfrak{b} has no \mathfrak{m} -primary component. From $\varphi(\mathfrak{D}^*\mathfrak{b}) = \overline{\mathfrak{D}}\overline{g} \cdot \overline{a} + \overline{\mathfrak{D}}\varphi(p_2)$, we have $\varphi(\mathfrak{D}^*\mathfrak{b}) = \overline{\mathfrak{D}}\overline{g} \subset (\overline{\mathfrak{D}}\overline{a} + \overline{\mathfrak{D}}\varphi(p_2))$, since $\overline{\mathfrak{D}}\overline{a}: \overline{\mathfrak{D}}\overline{g} = \overline{\mathfrak{D}}\overline{a}$ and $\overline{\mathfrak{D}}\overline{g} \ni \varphi(p_2)$. By Lemma 3, \overline{a} and $\varphi(p_2)$ have no common prime element, therefore $\overline{\mathfrak{D}}\overline{a} + \overline{\mathfrak{D}}\varphi(p_2)$ is unmixed and of rank 2 ($<\dim \overline{\mathfrak{D}}$). Since ranks of components of $\varphi(\mathfrak{D}^*\mathfrak{b})$ are not greater than 2, ranks of components of $\mathfrak{D}^*\mathfrak{b} + \mathfrak{D}^*v^*$ are not greater than 3 ($<\dim \mathfrak{D}^*$). This means $\mathfrak{D}^*\mathfrak{b} + \mathfrak{D}^*v^*$ has no \mathfrak{m}^* -primary component, hence $\mathfrak{c} = \mathfrak{D}_{\frown}(\mathfrak{D}^*\mathfrak{b})$ + \mathfrak{D}^*v^* has no \mathfrak{m}^* -primary components by Lemma 2. Since $\mathfrak{c} \supset \mathfrak{b}$, we have $\mathfrak{D}^*\mathfrak{b} + \mathfrak{D}^*v^* \supset \mathfrak{D}^*\mathfrak{c} \supset \mathfrak{D}^*\mathfrak{b}$, this implies $\mathfrak{D}^*\mathfrak{c} = \mathfrak{D}^*\mathfrak{b}$ because $\mathfrak{D}^*\mathfrak{c}$ has

no \mathfrak{m}^* -components. Hence $\mathfrak{D}^*\mathfrak{b}(=\mathfrak{D}^*\mathfrak{c})$ has no \mathfrak{m}^* -component, consequently \mathfrak{b} has no \mathfrak{m} -component, and therefore, $\mathfrak{D}^*\mathfrak{b}: \mathfrak{D}^*v^* = \mathfrak{D}^*\mathfrak{b}$.

Since $\overline{\mathbb{D}}\varphi(p_1):\overline{\mathbb{D}}\varphi(p_2)=\overline{\mathbb{D}}\overline{a}$, we can find \overline{b} which satisfies $\overline{b}\varphi(p_1)$ $-\overline{a}\varphi(p_2)=0$. Let a^* and b^* be elements of \mathbb{D}^* such that $\varphi(a^*)=a$, $\varphi(b^*)=b$, then we have $b^*p_1-a^*p_2\in\mathbb{D}^*v^*$, thus we have $b^*p_1-a^*p_2\in\mathbb{D}^*b\cdot v^*$ since $\mathbb{D}^*b:\mathbb{D}^*v^*=\mathbb{D}^*b$. Therefore we have $b^*p_1-a^*p_2=v^*(c^*p_1+d^*p_2)$, consequently we have $b_0^*p_1-a_0^*p_2=0$, where $b_0^*=b^*-v^*c^*$, $a_0^*=a^*+v^*d^*$. Hence $a_0^*\in\mathbb{D}^*p_1:\mathbb{D}^*p_2=\mathbb{D}^*a$. On the other hand, from the equation $\varphi(a_0^*)=\varphi(a^*)=\overline{a}$, we have $\mathbb{D}^*a=\mathbb{D}^*a=\mathbb{D}^*a$, this implies that $\mathbb{D}^*a=\mathbb{D}^*a_0^*$. Since $a\neq p$, we have $a_0^*\in\mathbb{D}^*p$, and $a_0^*\in\mathbb{D}^*p$ implies that $a_0^*=\mathbb{D}^*p$. Since $a\neq p$, we have $a_0^*\in\mathbb{D}^*p$, and $a_0^*\in\mathbb{D}^*p$ implies that $a_0^*=\mathbb{D}^*p$. Since $a\neq p$, we have $a_0^*\in\mathbb{D}^*p$, and $a_0^*\in\mathbb{D}^*p$ implies that $a_0^*=\mathbb{D}^*p$. Since $a\neq p$, we have $a_0^*\in\mathbb{D}^*p$, and $a_0^*=\mathbb{D}^*p$ implies that $a_0^*=\mathbb{D}^*p$. Since $a\neq p$, we have $a_0^*\in\mathbb{D}^*p$, and $a_0^*=\mathbb{D}^*p$ implies that $a_0^*=\mathbb{D}^*p$ implies tha

References

- M. Nagata: A general theory of algebraic geometry over Dedekind domains, II,
 J. Amer. Math. Soc., 80, no. 2, 382-420 (1598).
- [2] O. Zariski: The theorem of unique factorization in p-series ring (unpublished).
- [3] M. Auslander and D. A. Buchsbaum: Unique factorization in regular local rings, Proc. Nat. Acad. Sci., U. S. A., 45, 733-734 (1959).
- [4] D. G. Northcott: On unmixed ideals in regular local rings, Proc. Lond. Math. Soc., 3, 20-23 (1953).