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In the following we shall show that the Fourier cosine transform
and the Fourier exponential transform are characterized by some of
their properties.

At first we shall prove a number-theoretical lemma. Let
p <2 p. <: p <2

be the all prime numbers and/(n) a function defined at every natural
number such that /(n)--Z(n), if every prime divisor of n is one of
p, p.,..., p, and /(n)-O otherwise.

Lemma. Let f(n) be a function defined at every non-negative

integer and f(n) absolutely convergent. Let us denote
t=O

F(m)--, f(mn)

for every natural number m. Then

f(m)--, [(n) E(mn)

converges to f(m) as -c.
Proof. We have

f(m)--, f(mn) z,(d)
and

therefore

(n, p p.. p,)-- 1,

otherwise,

f(m)--, .f(mn),
where n ranges over all positive integers prime to Pl P.’" "P,. Then

f(m)--f(m) I->
and the right hand side of this inequality tends to 0 as ,--> o. Q.E.D.

By we denote the family of all C (R)-functions with compact
carrier. For a given continuous function F(x) we denote

()- F(at)f(t)dt, .
Theorem 1. Let an even function C(x) be the second derivative

of a bounded function, and

C(n)=, (n) 1 )

for all e . Then
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Proof.

where

C(x)-cos 2 x.
From the Poisson summation formula and (1) we get

Hq(0)+2 H(n)--O,

H(x)-C(x)--cos 2=x.
By the hypotheses of the theorem there is a bounded function G(x)
such that G"(x)-H(x), so

H(n) f’H(nx)(x) dx

1 f G(nx)p"(x)dx
b

Hence ,H(n) is absolutely convergent. If (x)e, then

Therefore

But we have

By (2) and (3)

H(0)+2 , H(n)--O. ( 2 )

g(mxt)f(t)lmldt

H(m0)+2 , H(mn)-O.

H(x)O. Q. E. D.
Next we want to deal with Fourier exponential transforms:
Theorem 2. Let E(x) be a bounded continuous function of a real

variable and not equal to the constant O. If
E(,)(x)--E.E4 1 )

for every pair of functions ,, and, EF(n)--, F(n), (2)

for every ; that is,

which means

H(x)(x) dx-O

Applying our lemma we get

2H(1)-lim /(n).0-0,
->oo =i
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then

Proof.
there exists a function such that

E(1) 0.
Let us denote

E(x)- e or e-ix.
From now we denote ?(x)-(x--h).

B(h)-- E(1)
E(1)

For every e we have

therefore

and hence

e, f%(-t+)(t) t

ff (x-t)(t h) dt

=,/,p

E(1)--B(h). E’(1).
Setting = into (3) we obtain

E/(1) B(h)Eq(1)
and it follows from (3) that

B(h+ k)E(1) B(h)B(k)E(1).
Since E(1)0 we get

B(h+k)--B(h)B(k);
and we can denote

B(h) =e
with a complex constant b. (It is impossible that B is 0.)
shall transform the formula (3)"

E(1) E(t)(t--h) dt

fE(t+n)(t) dt

and

hence

for all functions e.
and

B(h). E(1)--feE(t)(t) dt;

f(E(t-t-h)--eE(t))(t) dt--O

So we get
E(x-t- h) E(x)e

Because of E(x) 0

(3)
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E(h)--ceibm, c--E(O)O.
By the boundedness of E(x) b must be a real number.

Ee(x)--fce’xt(t) dt--oF,( b=--a),
where

Therefore

Thus we have

", E u c ’, Fq n

which is by the Poisson summation formula equal to

But by the hypothesis (2) of the theorem it is also equal to

e(n). ( 5 )

If 2z> b [, we take as such a function e that its carrier contains

neither n nor 2 n with the exception 1 and (1)0. To such (4)
b

is not equal to (5). So it must be

Similarly 2z] b ]. And finally we get
2-] b , c-1. Q.E.D.

To any valuation vector ring we can prove a result similar to Theorem
2. (In this case we must consider 0.)
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