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3. Non-paternity of a putative man related with the mother but
not with the father. We now proceed to he ease where a putative
man and the mother of a child have anteeedants of/th and vth genera-
tions respectively in common while the true father of
the child is in no consanguineous relation with them. (C)(C)
The probability of the triple which consists of a puta- .
tive man A and a mother-child combination (a; SV)
under the imposed relationship is given by (

V(a; ] a,+) ] a(ab, a), c ----ab

where the range of summation is, as before, the set
9--tg(a; ]) of types A which together with A can not produce A.
Now fortunately here also, it can be shown directly that there exists
a remarkable identity

Y(a/; ] a,+)=(1--2-*+)Y(a/; ])
provided =+,--1>1, while for the exceptional value =1, i.e.
,= 1 we have

Consequently, subsequent arguments can be economized and really
reduced to those in the ordinary case without any consanguinity. The
final result for the total probability of non-paternity in the present
case is given by

___1p (p----l),

(1--2-+)P (2=/-b-- 1 > 1).
The decrement of P(a.,*+) compared with P as well as its behavior
as 2->o is quite similar as in the previous case. In particular, we
now have

p_p(a,,.l)={-(P--P(a,.$)) (t--v--l),

2 (P--P(a,,))
and

4. Illustrative examples. The general results obtained in the
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previous sections will be illustrated by means of human blood groups.
The MN blood group offers the simplest example. In fact, we

have only to specialize the general formulas by putting m-2. Denot-
ing, as usual, by s and t the distribution probabilities of the genes
M and N respectively, we get for the total probabilities of non-paternity
considered the following formulas"
Pu(a: )=P--2-- st(1--4st)--(1--2-)P+2-- st(1 +2st),
P(a. +) (1 --2-)P,

P(a.)-- Pu (Z--,-- 1),

(1--2-+)P
Here Px denotes the ordinary probability of non-paternity without
any consanguinity which is equal to

P=st(1--st).
The ABO blood group involves a recessive gene. The general

discussion stated in the previous section must be accordingly modified,
since now the decision of consistency is to be based upon phenotypes.
In fact, by virtue of the presence of the recessive gene O, the range
9 concerning phenotypes diminishes strictly in comparison with the
sum of the constituting 9’s concerning genotypes unless the child has
the type AB. By following the above arguments thus modified, it is
shown that the total probabilities are given by the formulas:

Po(a; )--(1 2-)Po+2-pqr(1 +2r),
P,o(a,.)--(1 --2-)P,o,

p.o(a.)_{P.o (----1).

(1--2-+)Po

where p, q and r denote, as usual, the distribution probabilities of the
genes A, B and O, respectively, and Po the ordinary probability of
non-paternity which is equal to

Po=P(1--P)+q(1--q)+pqr(3--r).
The decrease of the probabilities based on the presence of consanguinity
is perceived here also. Namely, it is shown that we have a system
of inequalities

< < P .o.
In particular, the last inequality may be verified as follows:

2(P,o--P,o(a; ))-p(1-p) +q(1--q)--pqr(1--r+r)
(1 --r)r +pq((p--q)(1 +2r)+r(5+2r)+pq(1+3r)) > 0.

Here the use is made of the identity p+q+r-1.
It is noted here, by the way, that the absence of the gene 0

causes a sort of discontinuity of the probabilities with respect to r.
This is a phenomenon which has appeared also in case of non-consan-
guinity. In fact, if the gene 0 is known to be entirely absent, the
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mode of inheritance of the ABO group becomes quite same as that of
the MN group. Hence, for instance, the probability Po(a:) for such
an extreme distribution is given by

P,o(a,: )---- pq(1 pq)-2 -pq(1 --4pq)
while, by merely putting r-0, the value obtained in the generic case
becomes

(1--2-*)pq(1--3pq)
which is different from the former true value. More precisely, the
value of the latter is smaller by 2(1-- 2--)pqz72--pq than that of
the former. Such discontinuity appears also for other kinds of prob-
abilities considered above.

Such discontinuity appears also between Q and MN blood groups
by virtue of the recessive gene q involved in the former. However,
it does not appear between ABO and Q blood groups. In fact, the
probabilities for the Q group may be obtained from those for the ABO
group by simply putting (p, q, r)-(u, 0, v), u and v being the distribu-
tion probabilities of the genes Q and q, respectively. We thus get

P(a: )-(1--2-)P, Pq(a,)--(1--2-)P,

P(a,.+) - (--,--1),

(1--2-/)P
with

PQ --UV4.
5. Absolute nonopaternity. The discussions until now have been

concerned with proving of non-paternity of a man against a mother-
child combination. But there are cases where the non-paternity proof
is possible with no regard to the type of mother. This constitutes the
absolute non-paternity.

Among three kinds of consanguinity considered in the previous
sections, the last two, after disregarding the type of mother, become
coincident for our present problems of absolute non-paternity. Con-
sequently, we now have to distinguish two cases.

We begin with the case where a putative man can prove his non-
paternity against a child who is in no consanguineous relation with
him but whose parents have /th and ,th antecedants in common. The
distribution probability of a child under the imposed condition is given by

A:(ii)=A,+2--i(1--i), A:(ij)--A--2-iJ,
valid for any / and ,. On the other hand, the probability that a man
can prove his non-paternity against a given child of A, is given by

where the summation extends over the set/2-t?(]) of types A which
are absolutely inconsistent with A. It is expressed by the formula
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V(ii)-(1--i), V(ij)-(1--i--j).
Consequently, the total absolute probability of non-paternity in this
case is given by

C(:)-,A:(])V()-(1--2--)C+2--(1--2S.+S)
=C+2--(2S-3S-2S+3S)

where C is the corresponding probability in the ordinary case which
is equal to

C=1-4S+4S+2S:-3S.
Compared with A,, the probability A,:() increases or decreases ac-
cording to A to be homozygous or heterozygous. But the above
formula shows that these deviations cause as the whole the increase
of the total probability. In fact, we get

2 +(C(a,: )--C)- i](2(i+])(1--i--])+i+])
which remains always positive except a trivial case of a single gene.

We now proceed to the case where a putative man and a child in
question have th and (,+l)th antecedants in common. Similar argu-
ments as above lead to the total probability of non-paternity in this
present case. Namely, we have the expression

C(a,..+)-- A, a,.+ (ab, )

or alternatively
C(a,+) a.+(ab, ) Y().

ab

The final formula is then given by the formula
C(a,.,+)- (1-2-’)C

The decrease by virtue of the presence of consanguinity is evident.
In conclusion, we shall illustrate the results by means of human

blood groups. A modification similar as above will be required according
to the presence of a recessive gene. The final formulas are as follows:
Ca,:)--C+2- st(1--2st), Co(a,:)-Co +2-pqr(1-2r);
Ca,.+)-(1--2-)Cn, C,o(,.+)-(1--2-)Co,

the C’s denoting the ordinary probabilities given by
Cn=2st, Co 4pqr.

Though, as shown above, the inequality C(a,;,)>C holds generally
in genotypic decision, it is not necessarily true in phenotypic decision.
In fact, the difference Co(a,;)--Co-2-pqr(1--2r) is positive for
r< 1/2 but negative for r 1/2. However, it may be noted that the
difference

Co(:)--Co(,+)--2-pqr (1 +2r)
remains always positive provided every gene is really present.

The phenomenon of discontinuity between these groups appears here
also by virtue of the presence of the recessive gene.


