## 36. A Remark on my Paper "A Unique Continuation Theorem of a Parabolic Differential Equation"

By Taira Shirota

Osaka University (Comm. by K. KUNUGI, M.J.A., March 12, 1960)

§1. Introduction. It is well known that real solutions of second order elliptic equations with real coefficients have the property that if the difference of two vanishes sufficiently fast at a point then they are identical in their common range of definition. The question naturally arises what kind of extensions of the unique continuation theorem mentioned above are valid for solutions of parabolic differential equations?

In the present note, we give a simple proof of the theorem<sup>1)</sup> in my paper<sup>2)</sup> in which I asserted a partial answer of the problem.

§2. Let G be a convex domain of the Euclidean n+1 space  $R_{i,x}: \{-\infty < t < +\infty, -\infty < x_i < +\infty \ (i=1,2,\cdots,n)\}$ , containing a curve  $C: \{(t,x_i(t)) \mid t \in [a,b]\}$ , where  $x_i(t) \in C^1[a,b]$ .

Consider real solutions u of an inequality of the following kind:

$$(2.1) \quad \left|\frac{\partial u(t,x)}{\partial t} - \sum_{i,j=1}^{n} a_{ij}(t,x) \frac{\partial^2 u(t,x)}{\partial x_i \partial x_j}\right| \leq M \left\{ \sum_{i=1}^{n} \left|\frac{\partial u(t,x)}{\partial x_i}\right| + |u(t,x)| \right\}.$$

Here  $(a_{ij}(t, x))$  denote a positive definite, symmetric matrix of real valued functions  $a_{ij}(t, x) \in C^2(G)$ <sup>3)</sup> and M a constant.

The theorem in my previous paper is the following.

**Theorem.**<sup>4)</sup> If u is a solution of (2.1) in the domain G and if for any  $\alpha > 0$ 

(2.2) 
$$\lim_{\substack{x \to 0 \\ i \in [a,b] \\ i,j=1,2, \dots, n}} \max_{\substack{x = x(i) \mid -\pi \\ i \in [a,b] \\ i,j=1,2, \dots, n}} \left\{ \left| u(t,x) \right|, \left| \frac{\partial u}{\partial x_i}(t,x) \right|, \left| \frac{\partial^2 u}{\partial x_i \partial x_j}(t,x) \right| \right\} | x - x(t) |^{-\alpha} = 0,$$

then u vanishes identically in the horizontal component  $G \land \{(t,x) \mid t \in [a,b]\}$ .

In the following we shall sketch the direct proof of the theorem using notations stated in my paper without repeating definitions of them.

<sup>1)</sup> See below  $\S2$ .

<sup>2)</sup> T. Shirota: A unique continuation theorem of a parabolic differential equation, Proc. Japan Acad., **35**, 455-460 (1959).

<sup>3)</sup> This restriction of the coefficients may be weakened. For instance, we may remove the restriction with respect to  $a_{ij}|_{tt}$ .

<sup>4)</sup> More precisely, in my previous paper we assume that  $x_t(t) \in C^2[a, b]$  and in (2.2) the term with respect to  $u_t$  was inserted, but the refinements of these assumptions in the theorem will be of no essential matter.

T. SHIROTA

[Vol. 36,

§3. To prove the theorem we may assume that  $C = [-\varepsilon, 1+\varepsilon] \times \{0\}$ and that

(3.1)  
$$L(u) = q(t, x) \frac{\partial u}{\partial t} - \sum_{ij} \overline{a}_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_i b_i \frac{\partial u}{\partial x_i} \\ = q(t, x) \frac{\partial u}{\partial t} - \left(\frac{\partial^2}{\partial r^2} + \frac{n-1}{r} \frac{\partial}{\partial r} + \frac{N}{r^2}\right) u$$

where  $((\overline{a}_{ij}))$  is positive definite and  $\overline{a}_{ij} \in C^0(t,x)$   $(0 \leq r \leq R)$ ,  $q(t,x) (>\delta>0) \in \overline{C}^1(t,x)$ ,  $b_i(t,x) \in \overline{C}^0(t,x)$ , the coefficients of  $N \in \overline{C}^1(t, r, \varphi_{\sigma})$  and the derivatives of the coefficients of N with respect to  $t \in \overline{C}^1(\varphi_{\sigma})$   $(0 < r \leq R)$ . Furthermore we may assume that for n>1.

(3.2) 
$$\int Nw_1 \cdot w_2 dO_1 = \int Nw_2 \cdot w_1 dO_1,$$

(3.3) 
$$\frac{\partial}{\partial r} \int Nw \cdot w dO_1 \leq m_0 \int Nw \cdot w dO_1 < 0 \quad (m_0 \geq 2)$$

for any  $w_1$ ,  $w_2$  and  $w \in C^2(x \mid |x|=1)$ , for any  $t \in [-\varepsilon, 1+\varepsilon]$  and for any  $r \in (0, R]$ .

Moreover we suppose that u satisfies the conditions (2.1) and (2.2) with  $x_i(t)=0$  for  $t \in [-\varepsilon, 1+\varepsilon]$ . Let  $D_{r_0, \kappa_0}(r_0 \leq R)$  be the domain  $\{(t,x) \mid 0 < t < 1 \text{ and } \mid x \mid < r_0 \land K_0^{-1}t \land K_0^{-1}(1-t)\}$ . Moreover let  $\rho(r)$  and  $\varphi(t)$  be the smooth functions such that

$$egin{aligned} &
ho(r) = 1 \quad ext{for} \quad r: 0 \leq r \leq rac{3}{4} \ &
ho(r) = 0 \quad ext{for} \quad r: r \geq rac{4}{5} \ &0 \leq 
ho(r) \leq 1 \quad ext{for any } r, \end{aligned}$$

and such that

$$arphi(t) = K_0^{-1}t \quad ext{for} \quad t: 0 \leq t \leq K_0 r_0 - arepsilon \ = r_0 \quad ext{for} \quad t: K_0 r_0 + arepsilon \leq t \leq 1 - K_0 r_0 - arepsilon \ = 1 - K_0^{-1}t \quad ext{for} \quad t: 1 - K_0 r_0 + arepsilon \leq t \leq 1, ext{ and} \ \left(rac{2}{3}r_0
ight) \wedge \left(rac{3}{2}K_0
ight)^{-1}t \wedge \left(rac{3}{2}K_0
ight)^{-1}(1-t) \leq arphi(t) \leq r_0 \wedge K_0^{-1}t \wedge K_0^{-1}(1-t)$$

Then  $v = u \Psi(t, x) = u \cdot \rho(r \cdot \varphi(t)^{-1}) \in \mathbb{R}$  where  $\mathbb{R}$  is the class of functions v such that  $v \in C^2(x) \cap C^1(t)$  in  $D_{r_0, K_0}$  with the carrier contained in  $\overline{D}_{\frac{4}{5}r_0, \frac{5}{4}K_0}$  and such that v satisfies the following condition:

(3.4) 
$$\lim_{r \to 0} \max_{|x| = r \atop t \in [0,1] \atop \frac{d}{d} = 1, 2, \dots, n} \{ |v(t,x)|, |v_{|x_i}(t,x)|, |v_{|x_ix_j}(t,x)|, |v_{|t}(t,x)| \} r^{-\alpha} = 0.$$

Our proof of theorem follows immediately from the following lemma.<sup>5)</sup>

**Lemma.** Let  $\Phi(t)$  be the smooth function such that

$$\Phi(t) = t \quad \text{for} \quad t: 0 \leq t \leq \frac{1}{5}$$

5) See 2).

A Remark on my Paper

$$=1 \quad \text{for} \quad t: \frac{2}{5} \le t \le \frac{3}{5} \\ =1-t \quad \text{for} \quad t: \frac{4}{5} \le t \le 1.$$

Then for sufficiently small  $r_0$  and sufficiently large  $K_0$  with  $r_0K_0 \leq \frac{1}{5}$ , there are constants  $\alpha_0$  and  $K_1$  such that for any  $\alpha > \alpha_0$  and for any  $v \in \Re$ ,

(3.5)  

$$\begin{aligned}
\int \int \int (Lv)^2 r^{3-2\alpha} \Phi(t)^{3\alpha} dr dO_1 dt \\
&\geq K_1 \alpha^3 \int \int \int (v)^2 r^{-2\alpha} \Phi(t)^{3\alpha} dr dO_1 dt \\
&\int \int (Lv)^2 r^{4-2\alpha-n} \Phi(t)^{3\alpha} dx dt \\
&\geq K_1 \alpha \int \int \left( |v|^2 + \sum_{i=1}^n |v_{i,x_i}|^2 \right) r^{4-2\alpha-n} \Phi(t)^{3\alpha} dx dt.
\end{aligned}$$

The inequality (3.3) follows from (3.2) by the Cordes' method and the inequality (3.2) is derived from (3.2), (3.3) and the following inequalities:

$$\begin{split} & \iint (Lv)^2 r^{3-\alpha} \varPhi(t)^{3\alpha} \, dr dO_1 \, dt \\ & \geq \iiint \{2\alpha rz \cdot L^*z - \alpha^2 r^2 z^2 + (L^{**}z)^2 + 2L^*zL^{**}z\} r^{-1} \varPhi(t)^{3\alpha} \, dr dO_1 \, dt, \\ \text{where } z = vr^{-\alpha}, \ L^*z = \alpha(\alpha + n - 2)z + Nz + r^2 z_{|rr}, \\ L^{**}z = (2\alpha + n - 1)r z_{|r} - qr^2 z_{|t}, \\ & | r \varPhi_{|t} / \varPhi | \leq \left(\frac{1}{K_0} \vee r_0\right) k_1 \quad \text{for} \quad (t, x) \in D_{r_0, k_0} \end{split}$$

and

$$\int\!\!\!\int\int qr z_{ert \iota} \cdot Nz \, \varPhi(t)^{ert lpha} dr dO_1 dt \ \leq k_2 r_0 \!\!\int\!\!\!\int\!\!\!\int (z_{ert \iota})^2 r^{ert a} \, \varPhi(t)^{ert lpha} \, dr dO_1 dt - (k_8 + k_1 \cdot k_2 (K_0^{-1} \lor r_0) lpha) \ \int\!\!\!\int\!\!\!\int\!\!\!\int z \cdot Nz \, \varPhi(t)^{ert lpha} \, dr dO_1 dt,$$

where  $k_1$  is a positive constant depending only on  $\Phi_{|i}$ ,  $k_2$  a positive constant depending only on the derivatives of  $a_{ij}(t,x)$  of order  $\leq 2$  with respect to x and of order 1 with respect to t and  $k_3$  a positive constant depending on the derivatives of  $a_{ij}$  of order  $\leq 2$  with respect to x and t.

No. 3]

<sup>6)</sup> Li Der-Yuan: Uniqueness of Cauchy's problem for a parabolic type of equation, Doklady Akad. Nauk, **129**, 979-982 (1959).