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(Comm. by K. KUNUG, M.;.A., March 12, 1960)

In this paper we shall discuss the integration of a given function
of a complex variable along a closed Jordan curve which encloses its
denumerably infinite set of poles and its essential singularities, by
making use of the properties of a compact normal operator in an
abstract Hilbert space and of linear functionals with domain 59.

Theorem 1. Let f() be holomorphic at all points of the closure

D of a simply connected domain D in the complex 2-plane, except at
its poles {}D tending to the point =0 interior to D and at its
non-isolated essential singularity 2-0.

If the principal part of the expansion of f(2) at any pole 2 is

given by and if n[<, then

1 2)d2-- n,
2i

OD

where the complex curvilinear integration along the boundary 3D of
D is taken in the positive (anti-clockwise) direction.

Proof. Let {} be an arbitrary complete orthonormal system in
the abstract complex Hilbert space which is complete, separable and
infinite dimensional, and let E be the orthogonal projection of onto
the subspace determined by .

If we now define N by N-- 2nE, it is easily verified that N has

the following properties:

1 the convergence of 2,N, is uniform, that is, N--

2 {2} is the oint seegrum of N, and N is the eharaeteristie
roeefon of eorresondfng o 2, --I, , ,...;

8 N is a eomae normal oerator in 1.
Since every linear continuous funetional L() on can be u in

the form L()--(, ) where the generating elemeng w is uniquely
deermined by he funeional L , from now on we shall denote by

he functional L associated with .
Nex we

1
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and consider the function H() defined by

H(1) f(1) L(iI--N)-.
Then, it is first clear that x and both belong to by virtue of

the assumption on a] for n=l, 2, 3,..., and that H(1) ean be holo-
morphie on D on account of the facts that all points in the complex
plane, except 0, , ,..., belong to the resolvent set p(N) of N and
henee

(I--N) -f 1 dE(z), p(N)’Z

= E 2
where g and {E(z)} denote the complex plane and the spectral family
associated with N respectively. According to the Cauchy theorem on
curvilinear integral, we have therefore,

fH()d2=0;
and this result permits us to conclude that

:n[: .f (I-Y)-ld’2i

The theorem has thus been proved.
Corollary 1. In the case where the sequence {} converges to a

non-zero complex number, the same assertion as that stated in Theorem
1 is also valid.

Proof. Let 0 be the limiting point of {}, and let {E(z)} denote
the spectral family of the compact normal operator N defined by

N-- (--0)E where E has the same meaning as before. Then,

since the characteristic projection of N corresponding to the charac-
teristic value --o is identical with E for any positive integer n, we
have, for every different from , n=0, 1,2,...,

f 1 d(z)
l--2o--Z

=l I--Io--(I--Io)
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which implies that f(2)--L;[_((2--20)I--N)"x is holomorphic at every

point 2 on D. In cnsequence, by the same reasoning as that used in
the proof of the preceding theorem, it is easily verified that the
present corollary holds.

Theorem 2. Let f(2) be subject to the hypotheses of Theorem 1.
If the principal part of the expansion of f() at any pole 2 is given
by

E

where p(n) denotes the order of the pole 2, and if a’] for

every admissible value of , under the condition that a’-0 for ,>p(n),
then

1 )d-- a"),

where 3D is the boundary of D, positively oriented.
Proof. If we put

=1 =1

where {.} is the same symbol as that used before, then, by the as-
sumption concerning [a">l, x. and , belong to for every admissible
vlue o u. Since, or any point 2 in the resolvent set p(N) o the
compact normal operator N defined at the beginning o the proo o
Theorem 1,

f 1

we see ha f(2)--L[(2I-N)-?, where M=max{(1),(2),...},

is holomorhie on D, and henee

2=i 2i
aD D

In addition, applying the fact that (I--N)- has derivatives of
orders, with

d(2I--N)-=(--1)’nI (2I--N) -(+), (2p(N); n-l, 2,...) [5],
d2

there is no difficulty in showing that

2=i o
(2) =0,
where 0 denotes the null operator.

By applying (2) to (1) we find that
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2ri 2

as we wished to prove.
Corollary 2. In the case where 2. converges to a non-zero com-

plex number 20 when n becomes infinite, the result stated in Theorem
2 is also valid.

Proof. Let N denote the compact normal operator (--0)E

as before. Then, by applying [(R--R0)I--N in place of (I--)
employed in the proof of Theorem 2, the present corollary can be
established in the same way as Theorem 2 was proved.

Theorem 3. Let {2},2,,... be all poles of a function f(2) defined

on the closure D of a simply connected domain D in the complex 2-
plane; let c, c2,. ., c be all accumulation points of {2}; let {,}:,2,,...
be a subsequence of {2}, which converges to c; let {2<,,}=,,..., con-

1,2,3...

tain all elements of {2}; let {2} and c, c2,...,c., be in the interior

of D; and let f(2) be holomorphic at all points of D, except at those
poles and non-isolated essential singularities.

If the principal part of the expansion of f(2) at any pole 2, is
given by

p(,) (,n)

where p(, n) is the order of the pole 2,, and if ]aJ’>[ converges

for all admissible values of , under the condition that aCJ’=0 for
, >p(, n), then

1 i)di- ,,
where 3D is the boundary of D, positively oriented.

Proof. In D we can first construct disjoint, simply connected
domains D, D,..., D such that the poles {2,)}=,,,..., together with
the corresponding essential singularity c, are in the interior of D for
--1, 2,..., M. Then, by virtue of the application of Corollary 2 to f(2)
restricted on the closure D of D, we obtain

1 )=,,
where OD denotes he boundary of D, ositively oriented.

On the other hand, sinee f(2) is holomorhie on he closed domain
R bounded by the boundaries of D and D, -1, 2,..., M, he integral
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of f(2) along the boundary of R is equal to zero according to Cauchy’s
curvilinear integral theorem.

In consequence, we have
1

2i
D 8D

=I =i

as we were to prove.
Remark. rom the extension of MittaK-Leffier’s heorem on the

decomposition of meromorphic functions into simpl fractions, it is clear
that there exist such functions f(1) as we have treated above.
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