75. A Note on the Milnor's Invariant λ' for a Homotopy 3-sphere

By Junzo TAO

Department of Mathematics, Osaka University (Comm. by K. KUNUGI, M.J.A., June 13, 1960)

1. Let M be a differentiable (4k-1)-manifold which is a homology sphere and the boundary of some parallelizable manifold W. (The word "manifold" will mean a "compact" manifold throughout in this note.) The intersection number of two homology classes α , β of Wwill be denoted by $\langle \alpha, \beta \rangle$. Let I(W) be the index of the quadratic form

$$\alpha \rightarrow \langle \alpha, \alpha \rangle$$
,

where α varies over the Betti group $H_{2k}(W)/(\text{torsion})$. Integer coefficients are to be understood.

Define I_k as the greatest common divisor of I(M) where M ranges over all almost parallelizable manifolds¹ without boundary of dimension 4k. The residue class $\frac{1}{8}I(W)^{2}$ modulo $\frac{1}{8}I_k$ will be denoted by $\lambda'(M)$.

Then J. Milnor [1] showed the followings:

(1) $\lambda'(M)$ depends only on the *J*-equivalence³⁰ class of *M*,

(2) λ' gives rise to an isomorphism onto

 $\Lambda': \Theta^{4k-1}(\partial \pi) \to Z_{\frac{1}{2}I_k}$ provided that k > 1,

where $\Theta^{4k-1}(\partial \pi)^{4}$ is the set of all *J*-equivalence classes of homotopy (4k-1)-spheres which are the boundaries of some parallelizable manifolds.

Finally, in the list of unsolved problems (see [1]), he proposed the following:

3) Two unbounded manifolds M_1 , M_2 of the same dimension are J-equivalent if there exists a manifold W such that

(1) the boundary ∂W is the disjoint union of M_1 and $-M_2$, and

(2) both M_1 and M_2 are deformation retracts of W.

¹⁾ A manifold M will be called almost parallelizable if there exists a finite subset F so that M-F is parallelizable.

²⁾ The index I(W) of an almost parallelizable manifold is always divisible by 8, provided that ∂W is a homology sphere (see J. Milnor [1]).

⁴⁾ $\Theta^{4k-1}(\partial \pi)$ forms an abelian group under the sum operation #, where # means the following. Let M_1 , M_2 be connected differentiable (or combinatorial) manifolds of the same dimension n. The differentiable (or combinatorial) sum $M_1 \# M_2$ is obtained by removing a differentiable (or a combinatorial) n-cell from each, and then pasting properly the resulting boundary together (see J. Milnor [1, §2] and H. Seifert-W. Threlfall [7, Problem 3, p. 218]).

No. 6] A Note on the Milnor's Invariant λ' for a Homotopy 3-sphere

Problem. Does there exist a homotopy 3-sphere M such that $\lambda'(M) \neq 0$?

In this note we shall give a negative answer to this question, that is,

Theorem 1. For any differentiable 3-manifold M which is a homotopy sphere, $\lambda'(M)=0$.

In the course of the proof of this theorem, the following is also proved.

Theorem 2. If any simply connected closed 3-manifold embedded semi-linearly in the 4-sphere is homeomorphic to the 3-sphere S^3 , then any simply connected closed 3-manifold is homeomorphic to S^3 .

2. Outline of the proofs. Let M be a topological 3-manifold which is a homotopy 3-sphere and let Δ be a 3-simplex of some fixed triangulation⁵⁾ of M. After V. Poénaru [6], $(M-\text{Int } \Delta) \times I^2$ is semilinearly homeomorphic to I^5 , where I^n means the *n*-cube (x_1, \dots, x_n) , $0 \leq x_i \leq 1$. As the boundary of $(M-\text{Int } \Delta) \times I^2$ is semi-linearly homeomorphic to the boundary of I^5 , we may embed $(M-\text{Int } \Delta)$ semi-linearly in the 4-sphere S^4 . Let U be the neighborhood⁶⁾ of $(M-\text{Int } \Delta)$ in S^4 . Then the boundary N of U has the following properties:

(1) N is a simply connected closed 3-manifold embedded semilinearly in S^4 ,

(2) N is homeomorphic to M # M, where M # M means the combinatorial sum⁴⁾ of M and M. From the above fact, if any simply connected closed 3-manifold embedded semi-linearly in S^4 is homeomorphic to S^3 , M # M must be homeomorphic to S^3 . After E. E. Moise [2], it may therefore be concluded that M is itself homeomorphic to S^3 . This proves Theorem 2.

Now we proceed to the proof of Theorem 1. Let M have a differentiable structure. As N is a 3-manifold which is semi-linearly embedded in S^4 , we may construct (see [5]) a differentiable 3-manifold V which is differentiably embedded in S^4 and is homeomorphic to N. As any 3-manifold has a uniquely determined differentiable structure by J. Munkres, S. Smale and J. H. C. Whitehead [4], V is diffeomorphic to the differentiable sum⁴ M # M of M and M. V divides S^4 into two parts, one of which we denote by W. Then W is a parallelizable 4-manifold which is differentiably embedded in S^4 and has the boundary V. As V is simply connected, we obtain $H_2(W)=0$ by the Alexander's duality theorem. Thus we obtain

$$\frac{1}{8}I(W) = \lambda'(V) = \lambda'(M \# M) = 2\lambda'(M) = 0.$$

This proves Theorem 1.

⁵⁾ After E. E. Moise [3], any 3-manifold has a triangulation.

⁶⁾ See J. H. C. Whitehead [8, p. 290].

J. TAO

References

- [1] J. Milnor: Differentiable Manifolds which are Homotopy Spheres (mimeographed), Princeton University (1959).
- [2] E. E. Moise: Affine structures in 3-manifolds II, Ann. Math., 55, 172-176 (1953).
- [3] E. E. Moise: Affine structures in 3-manifolds V, Ann. Math., 56, 96-114 (1952).
- [4] J. Munkres: Obstructions to the Smoothing of Piecewise-differentiable Homeomorphisms (mimeographed), Princeton (1960).
- [5] H. Noguchi: Smoothing of combinatorial *n*-manifolds in (n+1)-space (to appear).
- [6] V. Poénaru: Sur les variétés simplement connexes à trois dimensions, Rendiconti di Matematica, 18, 25-94 (1959).
- [7] H. Seifert-W. Threlfall: Lehrbuch der Topologie, Leibzig (1934).
- [8] J. H. C. Whitehead: Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., 45, 243-327 (1939).