75. A Note on the Milnor's Invariant λ^{\prime} for a Homotopy 3-sphere

By Junzo Tao
Department of Mathematics, Osaka University
(Comm. by K. Kunugi, M.J.A., June 13, 1960)

1. Let M be a differentiable ($4 k-1$)-manifold which is a homology sphere and the boundary of some parallelizable manifold W. (The word "manifold" will mean a "compact" manifold throughout in this note.) The intersection number of two homology classes α, β of W will be denoted by $\langle\alpha, \beta\rangle$. Let $I(W)$ be the index of the quadratic form

$$
\alpha \rightarrow\langle\alpha, \alpha\rangle,
$$

where α varies over the Betti group $H_{2 k}(W) /($ torsion $)$. Integer coefficients are to be understood.

Define I_{k} as the greatest common divisor of $I(M)$ where M ranges over all almost parallelizable manifolds ${ }^{1)}$ without boundary of dimension $4 k$. The residue class $\frac{1}{8} I(W)^{2)}$ modulo $\frac{1}{8} I_{k}$ will be denoted by $\lambda^{\prime}(M)$.

Then J. Milnor [1] showed the followings:
(1) $\lambda^{\prime}(M)$ depends only on the J-equivalence ${ }^{3)}$ class of M,
(2) λ^{\prime} gives rise to an isomorphism onto

$$
\Lambda^{\prime}: \Theta^{4 k-1}(\partial \pi) \rightarrow Z_{\frac{1}{8}} \Gamma_{k} \quad \text { provided that } k>1,
$$

where $\Theta^{4 k-1}(\partial \pi)^{4)}$ is the set of all J-equivalence classes of homotopy $(4 k-1)$-spheres which are the boundaries of some parallelizable manifolds.

Finally, in the list of unsolved problems (see [1]), he proposed the following:

[^0]Problem. Does there exist a homotopy 3 -sphere M such that $\lambda^{\prime}(M) \neq 0$?

In this note we shall give a negative answer to this question, that is,

Theorem 1. For any differentiable 3-manifold M which is a homotopy sphere, $\lambda^{\prime}(M)=0$.

In the course of the proof of this theorem, the following is also proved.

Theorem 2. If any simply connected closed 3 -manifold embedded semi-linearly in the 4 -sphere is homeomorphic to the 3 -sphere S^{3}, then any simply connected closed 3 -manifold is homeomorphic to S^{3}.
2. Outline of the proofs. Let M be a topological 3-manifold which is a homotopy 3 -sphere and let Δ be a 3 -simplex of some fixed triangulation ${ }^{5)}$ of M. After V. Poénaru [6], ($\left.M-\operatorname{Int} \Delta\right) \times I^{2}$ is semilinearly homeomorphic to I^{5}, where I^{n} means the n-cube $\left(x_{1}, \cdots, x_{n}\right)$, $0 \leqq x_{i} \leqq 1$. As the boundary of ($M-\operatorname{Int} \Delta$) $\times I^{2}$ is semi-linearly homeomorphic to the boundary of I^{5}, we may embed (M-Int Δ) semi-linearly in the 4 -sphere S^{4}. Let U be the neighborhood ${ }^{6)}$ of (M-Int Δ) in S^{4}. Then the boundary N of U has the following properties:
(1) N is a simply connected closed 3 -manifold embedded semilinearly in S^{4},
(2) N is homeomorphic to $M \# M$, where $M \# M$ means the combinatorial sum ${ }^{4)}$ of M and M. From the above fact, if any simply connected closed 3 -manifold embedded semi-linearly in S^{4} is homeomorphic to $S^{3}, M \# M$ must be homeomorphic to S^{3}. After E. E. Moise [2], it may therefore be concluded that M is itself homeomorphic to S^{3}. This proves Theorem 2.

Now we proceed to the proof of Theorem 1. Let M have a differentiable structure. As N is a 3 -manifold which is semi-linearly embedded in S^{4}, we may construct (see [5]) a differentiable 3 -manifold V which is differentiablly embedded in S^{4} and is homeomorphic to N. As any 3 -manifold has a uniquely determined differentiable structure by J. Munkres, S. Smale and J. H. C. Whitehead [4], V is diffeomorphic to the differentiable sum ${ }^{4} M \# M$ of M and M. $\quad V$ divides S^{4} into two parts, one of which we denote by W. Then W is a parallelizable 4-manifold which is differentiablly embedded in S^{4} and has the boundary V. As V is simply connected, we obtain $H_{2}(W)=0$ by the Alexander's duality theorem. Thus we obtain

$$
\frac{1}{8} I(W)=\lambda^{\prime}(V)=\lambda^{\prime}(M \# M)=2 \lambda^{\prime}(M)=0 .
$$

This proves Theorem 1.
5) After E. E. Moise [3], any 3-manifold has a triangulation.
6) See J. H. C. Whitehead [8, p. 290].

References

[1] J. Milnor: Differentiable Manifolds which are Homotopy Spheres (mimeographed), Princeton University (1959).
[2] E. E. Moise: Affine structures in 3-manifolds II, Ann. Math., 55, 172-176 (1953).
[3] E. E. Moise: Affine structures in 3-manifolds V, Ann. Math., 56, 96-114 (1952).
[4] J. Munkres: Obstructions to the Smoothing of Piecewise-differentiable Homeomorphisms (mimeographed), Princeton (1960).
[5] H. Noguchi: Smoothing of combinatorial n-manifolds in ($n+1$)-space (to appear).
[6] V. Poénaru: Sur les variétés simplement connexes à trois dimensions, Rendiconti di Matematica, 18, 25-94 (1959).
[7] H. Seifert-W. Threlfall: Lehrbuch der Topologie, Leibzig (1934).
[8] J. H. C. Whitehead: Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., 45, 243-327 (1939).

[^0]: 1) A manifold M will be called almost parallelizable if there exists a finite subset F so that $M-F$ is parallelizable.
 2) The index $I(W)$ of an almost parallelizable manifold is always divisible by 8 , provided that ∂W is a homology sphere (see J. Milnor [1]).
 3) Two unbounded manifolds M_{1}, M_{2} of the same dimension are J-equivalent if there exists a manifold W such that
 (1) the boundary ∂W is the disjoint union of M_{1} and $-M_{2}$,
 and
 (2) both M_{1} and M_{2} are deformation retracts of W.
 4) $\Theta^{4 k-1}(\partial \pi)$ forms an abelian group under the sum operation \#, where \# means the following. Let M_{1}, M_{2} be connected differentiable (or combinatorial) manifolds of the same dimension n. The differentiable (or combinatorial) sum $M_{1} \# M_{2}$ is obtained by removing a differentiable (or a combinatorial) n-cell from each, and then pasting properly the resulting boundary together (see J. Milnor [1, §2] and H. Seifert-W. Threlfall [7, Problem 3, p. 218]).
