117. On the Maximum Principles of Second Order Elliptic Differential Equations

By Kiyoshi Akô

Department of Mathematics, University of Tokyo (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1960)

The aim of this note is to extend the well-known maximum principle of E. Hopf¹⁾ concerning the general second order elliptic differential equation

(1) $F(x, u, u_k, u_{ij}) = 0,^{2}$

where $u_i = \partial u / \partial x_i$, $u_{ij} = \partial^2 u / \partial x_i \partial x_j$.

In this note we shall derive two kinds of the maximum principles under the following

Assumptions. I. The function $F(x, u, p_k, r_{ij})$ is defined in the domain $\mathfrak{D}: x \in G, |u|, |p_k|, |r_{ij}| < \infty$, where G is any domain in the Euclidean *n*-space.

II. $F(x, u, p_k, r_{ij})$ is continuously differentiable with respect to the arguments r_{ij} provided that the other arguments x, u, p_k remain fixed. Moreover, for every compact subset \mathfrak{A} of \mathfrak{D} there exists a constant A > 0 such that

$$A^{-1}|\xi|^2 \leq \sum_{i,j=1}^n rac{\partial F}{\partial r_{ij}} \xi_i \xi_j \leq A |\xi|^2$$

for any $(x, u, p_i, r_{ij}) \in \mathfrak{A}$, and for any *n*-tuple $\xi = (\xi_1, \dots, \xi_n)$.

III. $F(x, u, p_k, r_{ij})$ satisfies the Lipschitz condition with respect to the arguments u, p_i, r_{ij} in every compact subset of the domain \mathfrak{D} .

THEOREM I. Let $u^{(1)}(x)$ and $u^{(2)}(x)$ be two $C^2(G)$ -functions which satisfy the differential inequalities

(2) $F(x, u^{(1)}, u^{(1)}_k, u^{(1)}_{ij}) \leq 0$

and (3) $F(x, u^{(2)}, u^{(2)}_{k}, u^{(2)}_{ij}) \ge 0$

in the domain G respectively. We assume further that $u^{(2)}(x) \leq u^{(1)}(x)$ in the domain G. Then we have the following alternative:

Either $u^{(2)}(x) \equiv u^{(1)}(x)$ in the domain G, or $u^{(2)}(x) < u^{(1)}(x)$ throughout in G.

Proof. The proof will be carried out by reducing the theorem to the less general lemma.

LEMMA. If the function F is of the form

¹⁾ E. Hopf: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungsberichte Preuss. Akad. Wiss., **19**, 147–152 (1927).

²⁾ We denote by x the point (x_1, \dots, x_n) of the Euclidean *n*-space.

No. 8] On the Maximum Principles of Second Order Elliptic Differential Equations 493

(4)
$$\sum_{i,j=1}^{n} a_{ij}(x) u_{ij} + f(x, u, u_k),$$

then the theorem holds.

As for the proof of this lemma the reader may refer to Prop. 9 of the author's previous note.³⁾

Now, let us prove the theorem. According to Assumption II we can write

(5)
$$F(x, u^{(1)}, u^{(1)}_{k}, u^{(1)}_{ij}) - F(x, u^{(1)}, u^{(1)}_{k}, u^{(2)}_{ij}) \\ = \sum_{i,j=1}^{n} \frac{\partial F}{\partial r_{ij}}(x, u^{(1)}, u^{(1)}_{k}, v_{is})(u^{(1)}_{ij} - u^{(2)}_{ij}),$$

where $v_{ts}(x)$ are n^2 suitable functions which are of the form (6) $u_{ts}^{(1)}(x) + \theta(x)(u_{ts}^{(2)}(x) - u_{ts}^{(1)}(x)), \quad 0 < \theta(x) < 1.$

Next, we consider the elliptic differential equation

(7)
$$G(x, u, u_k, u_{ij}) \equiv \sum_{i,j=1}^n a_{ij}(x)u_{ij} + g(x, u, u_k) = 0,$$

where

(8)
$$a_{ij}(x) \equiv \frac{\partial F}{\partial r_{ij}}(x, u^{(1)}(x), u_k^{(1)}(x), v_{is}(x)),$$

$$(9) \qquad \qquad g(x, u, p_k) \equiv F(x, u^{(1)}(x), u^{(1)}_k(x), u^{(2)}_{ij}(x)) \\ -F(x, u^{(1)}(x) + u, u^{(1)}_k(x) + p_k, u^{(2)}_{ij}(x))$$

Clearly the function $G(x, u, p_k, r_{ij})$ satisfies Assumptions I-III. Hence we get the theorem, since the function

$$(10) u \equiv u^{(1)} - u^{(1)}$$

satisfies the differential inequality

(11)
$$G(x, u, u_k, u_{ij}) \leq 0$$

and since the identically zero function satisfies the differential equation

$$(12) G(x, 0, 0, 0) = 0$$

To derive a maximum principle of E. Hopf's type we shall further impose the following additional

Assumptions. IV. The function $F(x, u, p_k, r_{ij})$ is non-increasing with respect to the argument u; i.e.

$$F(x, u, p_k, r_{ij}) \leq F(x, u', p_k, r_{ij})$$
 provided $u \leq u'$.

V. The underlying domain G is bounded so that its closure \overline{G} is a compact subset of the *n*-space.

THEOREM II. Let $u^{(1)}(x)$ and $u^{(2)}(x)$ be two $C^2(G) \cap C(\overline{G})$ -functions which satisfy the differential inequalities (2) and (3) in the domain G respectively. If $u^{(2)}(x) \leq u^{(1)}(x) + \alpha$ on the boundary of G with a non-negative constant α , then the following alternative holds:

³⁾ K. Akô: On a generalization of Perron's method for solving the Dirichlet problem of second order partial differential equations, J. Fac. Sci. Univ. Tokyo, sec. I, **8**, 263-288 (1960). In the present note the continuity of the matrix $||a_{ij}(x)||$ is not required. But the proof of Prop. 9 remains valid in spite of this alteration.

[Vol. 36,

or

Either

 $u^{(2)}(x) < u^{(1)}(x) + \alpha$ throughout in G. *Proof.* Let β be the greatest value of the function $u^{(1)}(x) - u^{(2)}(x)$ in the closure \overline{G} of G. If β is less than α the proof is completed.

 $u^{(2)}(x) \equiv u^{(1)}(x) + \alpha$ in the closure \overline{G} of G,

So we shall assume that $\beta \ge \alpha$. Since the function $u^{(1)}(x) + \beta$ satisfies the differential inequality of the type (2) in G, and since the function $u^{(2)}(x)$ does the differential inequality (3) we get

either
$$u^{(2)}(x) \equiv u^{(1)}(x) + \beta$$

or $u^{(2)}(x) < u^{(1)}(x) + \beta$

everywhere in the domain G. Therefore, we see that $\beta \leq \alpha$ and hence $\beta = \alpha$. Thus we have established the theorem.

REMARK. The assumptions of Theorem II can be slightly modified as follows:

1°. The functions $u^{(1)}(x)$ and $u^{(2)}(x)$ are in $C^2(G)$ instead of being in $C^2(G) \subset C(\overline{G})$, where G is any bounded or unbounded domain.

 2° . For every boundary point x of G

 $\lim \inf (u^{(1)}(y) - u^{(2)}(y)) \ge -\alpha \quad (\alpha \ge 0)$ $y \rightarrow x, y \in G$

instead of the validity of the condition

 $u^{(2)}(x) \leq u^{(1)}(x) + \alpha$

on the boundary of G. Here, if G is unbounded the infinity ∞ must be considered to be a boundary point of G.

REMARK. The assumptions for Theorem II cannot essentially be modified. See the following

Example. $F \equiv \sum_{i=1}^{n} r_{ii} - 2k(2k+1) \cdot \sqrt[2k+1]{u^{2k-1}}$ $(k=1, 2, \cdots),$

G: any domain containing the origin.

We have two solutions $u_1(x)=0$ and $u_2(x)=-|x_1|^{2k+1}$ of F=0 for which the maximum principle (Theorem II) does not hold.