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138. Weakly Compact Operators on the Spaces of
Continuous Functions

By Junzo WADA
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

In this note we shall give a brief account of some properties of
weakly compact operators on the spaces of continuous functions on
general spaces. Our main purpose is to extend some results of Arens
[1] and Grothendieck [5]. Full details will appear in Osaka Mathe-
matical Journal.

1. Let E and F be locally convex linear topological spaces. Then
a continuous linear operator T of E into F' is said to be a compact
(resp. weakly compact) operator if T maps a neighborhood of 0 in E
into a compact (resp. weakly compact) subset in F. A completely
regular Hausdorff space X is said to be a k,-space if whenever U~K
is a neighborhood of z, in K for a subset U (3%, and for any com-
pact subset K (31x,), U is a neighborhood of z, in X. A neighborhood
here need not be an open set. A k,-space is a k-space,” and any com-
pletely regular space satisfying the 1st axiom of countability or any
locally compact Hausdorff space is always ak,space. Let X be a
topological space and © be a set of compact subsets. Then we denote
by Cs(X) the space of all continuous functions on X with the topology
of uniform convergence of sets in &. “|J&=X" denotes that the
sum of all subsets in & is X.

We first extend a theorem of Bartle [2]® to the case of locally
convex topological linear spaces.

Theorem 1. (i) Let E be a barrelled locally convex linear
space. Let Y be a completely regular Hausdorf space and let S be
a set of compact sets in Y with |JS=Y. Then a linear operator T
of E into Ce(Y) s continuous if and only if there is a continuous
mapping = of Y into E’ with respect to the topology o(E’, E) such
that (Te)y=<zy,e) for any ecE and for any yeY.

(ii) Let E be a Banach space. Let Y be a completely regular
Hausdorff space and S be a set of compact subsets in Y with JS=7Y.
Then a continuous linear operator T of E into Ce(Y) ts weakly
compact if and only if there is a continuous mapping = of Y into
E’ with respect to the topology o(E’, E") such that (Teyy=<zy, ey for
ecE and yeY.

(iii) Let E be a locally convex topological linear space. Let Y be

1) Cf. for example, Kelly [6].
2) Cf. [2, p. 55, Theorem 10.2].
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a kyspace and let S be the set of all compact subsets in Y. Then a
continuous linear operator T of E into Ce(Y) is compact if and
only if there is a continuous mapping r of Y into EL® for a balanced
convex w*-closed equicontinuous set € in E’, and (Te)y=_ry, e¢) for ecE
and yeY.

For the proof of (iii) we need to establish the following generalized
Ascoli’s theorem.

Lemma (Ascoli). Let X be a kyspace and let S be the set of all
compact subsets in X. Then a set A in Cg(X) is relative compact if
and only if A is an equicontinuous set in Cg(X) and A(x)={f(x)|
feA} is bounded for any xeX.

Let X be a stonian space. Then if a sequence {¢;}CC(X) con-
verges to 0 with respect to the topology ¢(C(X), C(X)), then {x;}
converges to 0 with respect to the topology ¢(C(X)’, C(X)").” There-
fore, by Theorem 1, we have the following

Theorem 2. Let X be a stonian space. Let Y be a completely
regular Hausdorff space satisfying the 1lst axiom of countability and
let S be a set of compact set in Y with | JS=Y. Then any continuous
linear operator of C(X) into Cy(Y) is weakly compact.

Corollary 1 (Grothendieck). Let X be a stonian space and let E
be a separable® complete Hausdorff locally convex linear space. Then
any continuous linear operator of C(X) into E is weakly compact.

Corollary 2. Let X be an extremally disconnected space® and
let © be a non-empty set of compact sets in X. Let Y be a compact
Hausdorff space satisfying the 1st axiom of countability. Then any
continuous linear operator of Ce(X) into C(Y) is weakly compact.

Remark. If a completely regular space satisfies the 1st axiom of
countability, then Cg(X) is, in general, not separable.

2. Let X be a metric space and let F' be a closed subspace in X.
Then there is for each f in C,(F)” an element Tf in C,(X), with
(Tf)(x)=f(x) for all x in F, such that T is non-negative, linear isometry
of C,(F) into C,(X) (the simultaneous extension theorem). But Day
[4] gave an example of a compact Hausdorff space X and of a closed
subspace F' such that there is no linear mapping of C,(F') into C,(X)
which is a simultaneous extension of all elements of C,(F). His

3) Let € be a w*-closed balanced equicontinuous convex subset in E’. Then we
denote by E( the normed space whose unit sphere is &.

4) A completely regular Hausdorff space X is said to be extremally disconnected
if for any open set U in X the closure U of U is also open. A compact Hausdorff
space is stonian if it is extremally disconnected.

5) Cf. [5, p. 168, Theorem 9].

6) A topological space is separable if it contains a countable dense subset.

7) If X is a topological space, then we denote by C,(X) the Banach space of all
bounded continuous functions on X with || f H=sg§ | f()].
x
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example is the following: Let X be the topological product space of
the closed unit intervals I; (1¢4) and let the set A of indices be
uncountable. Let S be the unit sphere of [,(4) with the topology
o(l,(4),1,(4)), where p>1, ¢>1 and p~'+¢'=1. Then we can regard
S as a closed subset in X and [,(4) as a linear subspace of C(S). Day
showed that there is no continuous linear operator T from L=1,(41)
into C,(X) such that, for each f in L, Tf is an extension of f. We
see that the space L is generated by a weakly compact set in C,(S).
By Theorem 1 and Theorem of Arens,® we have the following

Theorem 3. Let X be a paracompact space and let F be a closed
subset in X. Let L be a closed linear subspace in C,(F) which is
generated by a compact set in C,(F'). Then there is a simultaneous
extension of L into C,(X).

Corollary (Arens). Let X be a paracompact space and let F be
a closed subset in X. Let X be a separable closed linear subspace in
C.(F). Then there is a simultaneous extension of L into C,(X).

3. We next extend a theorem of Bartle, Dunford and J. Schwartz®
to the case of locally convex topological linear spaces.

Theorem 4. (a) Let X, Y be completely regular Hausdorff
spaces and let Y be a hemi-compact'® k-space. Let S be the set of all
compact subsets in X and let T be the set of all compact subsets in Y.
Then a continuous linear operator T of Cg(X) into Cy(Y) s weakly
compact if and only if there are a kernel function k(x,y) on KXY
(for some K e®) and a non-negative Borel measure v on K such that

(+) (= [ (7| K)@)k(e, y)v(de)
and k satisfies the conditions:

(i) for any yeY, k(x,y)e L'(K,v),

(ii) for any Borel set E in K, | k(x,y)r(dx) is a continuous
Junction on Y, £

(iii) for any He, sup f [k(, )| v(da) < +oo.

(b) Let X be a completely regular Hausdorff space and let Y
be a hemi-compact kyspace. Let & be the set of all compact subsets
of X and let T be the set of all compact subsets in Y. Then a con-
tinuous linear operator T of Cg(X) into Ce(Y) is compact if and only
if there is a kermel function k(x,y) on KXY (for some KeS) and
non-negative Borel measure v on K such that the equation (x) is satis-

8) Cf. [1, p. 18, Theorem 4.1].

9) Cf. [3, Theorems 4.3 and 4.4].

10) A topological space X is said to be hemi-compact if there is a sequence {K,}
of compact subsets in X such that X= glKn and KcC some K, for any compact set K
in X. h
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fied and k satisfies the condition (i) and
(iv) if ¥y.—>Y, in Y, then
lim | |k(x, y2)— Kk, ¥o) | »(dz)=0.

Ya>Yo
Let J be a set of indices. Then we denote by m(J) the space of
all bounded real functions on J with ]|m||=§up|w(j)|, and denote by
cJ

¢y(J) the subspace of those # in m(J) for which for each &>0 the
set of j with |2(s)|>¢ is finite; that is c,(J) is the set of functions
vanishing at infinity on the discrete space J. Now, we consider a
compact space such that all points are isolated except one point. Then
the conditions (ii) and (iii) of Theorem 4 imply the condition (iv) if
Y satisfies the 1st axiom of countability, and we have the following

Theorem 5. Let E be a separable metrizable locally convex linear
space. Then any weakly compact linear operator of c,J) into E is
compact.

Corollary 1 (Grothendieck). Amny weakly compact linear operator
of ¢, into a locally convex Hausdorff topological linear space is com-
pact.

Corollary 2. Let E be a Banach space whose dual E’ is separable.
Then any continuous linear operator of the space m imto E' 18 com~
pact.

Added in proof: Theorem 38 is not a proper extension of Corollary
of Theorem 3. But this theorem can be extended under some conditions
to the case of locally convex linear spaces.
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